教育學 碩士學位 請求論文

慶州大學校 教育大學院 教育行政專攻

指導教授

2003年 8月

慶州大學校 教育大學院 教育行政專攻

論文 教育學 碩士學位 論文 提出

指導教授

2003年 8月

教育學 碩士學位 論文 認准

審查委員

審查委員

審查委員

慶州大學校 教育大學院

2003年 8月

	1
1.	1
2.	2
II.	3
1.	3
2.	19
3.	32
III.	37
1.	37
2.	38
3.	40
	41
1.	41
2.	41
3.	76
	87
1.	
2.	
	91
ABSTRAC	T94
r 1	97

4	- 1>	<
12	- 2>	<
13	- 3>	<
14	-4>	<
15	-5>	<
31	-6>	<
38		
41	- 1>	<
43	- 2>	<
44	-3>	<
44	-4>	<
46	-5>	<
47	-6> 가	<
48	-7>	<
49	- 8>	<
49	- 9>	<
50	- 10>	<
51	- 11>	<
52	- 12>	<
52	- 13>	<
53	- 14>	<
54	- 15>	<
55	- 16>	<
56	- 17>	<

5′	< - 18>	<
5	< - 19>	<
58	< -20>	<
59	< -21>	<
60	< -22>	<
6	< -23>	<
62	< -24>	<
	< -25> -	<
63	< -26>	<
	< -27>	<
65	< -28>	<
65	< -29> ·	<
60	< -30>	<
6	< -31>	<
6	< -32>	<
69	< -33>	<
69	< -34>	<
70	< -35>	<
7	< -36>	<
72	< -37>	<
73	< -38>	<
7	< -39>	<
70	< -40>	<
< >		
3	< -1>	_
·····	- 1>	_

.

1. 21

, 가 , , ,

가 . , ,

가 .

· ·

가

가 가 , 가 .

, 가 가 , , , ,

, 가 가 가 2. 가 가? 가 가? 가?

- 2 -

II.

1. 1) (1) 가 21 가 가 .1) 1997 10 ' & '가 가 'Vision Korea' 가 IMF 2 가 1999 가 7 .2) (2) , ^г21С , ^г , 2001), pp.20-21. 1) .) [2)) (

, 2002), p.1.

"5)

- 1> .6) < - 1>

5) , r OECD 7 , 1998), p.73

6) , ^r2002 J (, 2002), p.32.

³⁾ Peter F. Drucker, Post-Capitalist Society (New York, 1993), p.29.

⁴⁾ Peter F. Drucker, , p.29.

(knowledge)	(information)		
()	()		
가	가		

, ,

(know-how)

.7)

(3)

, 200 가

.

...

" <u>-</u>

가 가 ,

7) , p.2.

가 가 가 가 가 가

- 6 -

가 가 .8) 가 1960 (Daniel Bell) .9) 가 가 .10) 가 가 .11) 가 가 .12) 8) , 2002), pp.4 5. 9) , 1999), p.6. r₂₁ 10)) (, 1999), p.9. , r 11) 」(2000), p.41. , г21 12) , 2001), p.1.) (

가

가 .

.13)

가 가 ,

가가 가

(4)

가 가

가 , · 가 , , 가

13) , ^r21 , (2001), p.8.

가 가 가 가 14) J. Naisbitt 15), 가, 16) 가 가 .17) 가 가 가 가 .18)

14) Toffler. Alvin, The Third Wave(London: Pan, 1980), pp.9 10.

¹⁵⁾ Naisbitt. John, Megatrends(New York: Warner Books, 1982), , 4 (: , 1993), p.381.

^{16) ,} p.10.

^{17) ,} p.13.

^{18) ,} p.10.

• 가가 가 가 가가 (teaching) (learniang) 가 가 가 .19) 가 가 가

- 10 -

19)

, p.15.

2)

, 가 .20)

가 ,

,

가 가 , 가 가 , , , ,

,

, , , , ,

,

, 가 , 가 .²¹⁾

e a '21 ',

· 2 1 '가

, ,

가 , (tacit

knowledge) (explict knowledge)

. 가

20) , , p.11. 21) , プト (: , 1998), pp.99 120.

가 가 .22)

가 가

.23) < - 2>

> - 2> <

	가가
,	

3)

(: , 1998), p.62. 1 (1999), p.28. 22) 23) 2

•

가 .

· , , 가

가

.24)

< -3>

	,

,

, 가 ,

가 가 .

가 24) , 「 가 」(, 1999)

, -4> .25)

< -4>

	,		,	,	,		
,	,	,	,	,		,	
,	,	,	,	,		,	
,		,	,		,		
,			,		,		

2000 7 10

< -5>

.26)

25) , ^r , (1997),

pp.109 129. 26) , ^r

, 1998), pp.323 326.

< -5>

, , ,
,
,
, , ,
, , , , , , , , , , , , , , , , , , , ,
,
가 ,
, , ,
,
, ,
, ,
,
, ,

21 ,

,

가 ,

,

---, ·

가 . 가

27) , , pp.11 13.

가

가 .28)

가 .29) 28)) (

, 2002), pp.126 128. , p.17.

29)

, 가 ,

,

.

4)

21 .

가 . , 21

·

. '98 8 ·15 6 7 7 7 7 7 10 2 2

가

.30) ' 2002: ', '2002 ', ' 가

5 ', ' 21(BK21)', ' ',

30) , p.18.

,

,

,

· , , ,

가

.31)

,

. 가

· ,_____

31) , ^r , (2002), pp.13

가 가 가 가 2. 1) 가 .32) 가 .33)

- 19 -

(: , 1983), pp.221 230. (: , 1998), pp.28 30.

32) 33)

```
가
가
                                                               34)
            가
                            .35)
   가
                                가
        .36)
                                 가
                                 가
                                                   가
               37),
                   가
  38),
                                                                  가
         .39)
  E. Hoyle
34)
                                               , 1995), p.147.
                 ; pp.28 30.
35)
36)
                                                       ) (
            , 1961), pp.27 58.
37)
              , pp.221 230.
38)
                                                             , 1975),
pp.17 31.
                                             , 1961), pp.28 30.
39)
                , (
                             :
```

가 가 .40) 가, 가, 가, 가 41), 가 .42) 가

40) Hoyle. E, The Role of the Teacher (London: Routledge and Kegan Paul, 1972), pp.1 79.

⁴¹⁾

^{, 1998),} p.147. , 1999), pp.94 115. 42)

가 가 ,

가 .44)

.45)

가 , ,

^{43) , (: , 1968),} p.72. 44) , (: , 1968), p.203.

.46)

가 .

가 <u>.</u>47)

. 가

.

. .

46) , r (1998), p.21.

가 "48)

"49)

가

(3)

가

.50)

가

48) (: , 1982), p.23.

49) , 1986), p.231.

(: (: 50) , 1983), pp.242 243.

```
가
                     51)
                                                52)
                                                       53)
   (4)
                                    가
                                                                        가
                                                     가
                                                 가
                                        , 1984), p.126.
( : , 1981), pp.374 375.
, 1989), p.90.
51)
52)
                           (
53)
```

가 ,

, 가 , , .

가 가 , 가 가

, .55)

가 가 . , , , ,

,

가

. 가 가

, , 가 ,

 ·

2)

, , 가 , ,

가 .56)

가

(1)

.

가 가 . 가

.

가 가 . -

56) , p.33.

가 .57) (2) 가 가 가 가

.58)

1996), p.48. 58) , r , 2001), p.1.

가 가 가 가 pc .59) 60) 가 가 .61) (3)

) (

, 1999),

- 29 -

, p.147. , pp.20 21.

59) , ^r

pp.15 16.

60) 61)

가 가 가 가 가 가 가 가 가 가 가 62) (4) 62) (: , 1999), pp.325 326.

•

<u>.</u>63)

, < -6> .

< -6>

,	
가 ,	,
, ,	

,

. 가

63) , 「 7ト 」(, 2001) · · ·

, . 가

.

3.

1)

가? 가

가 . 가

가 가 가 ,

,

가 , 가가 ,

가 가 .64) 가 가 .65) W. M. Alexander .66) 가 가 가 2) : , 1985), pp.305 306. : , 1981), pp.374 375. 64) 65) 66) Alexander. W. M, Are you a good teacher?(1962) (: , 1986), pp.5 21.

. 21C 가 가 ,

(1)

.

, · · 가

가 , 가 .

•

.

<u>.</u>67)

67) , r (2002), p.38.

,

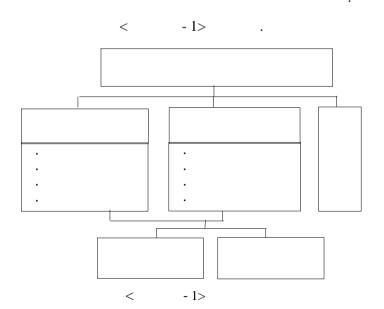
, .68)

(3) 가 .69) 가

가

69) , p.32.

III.


1.

가 . ,

가

·

,

2.

1)

, , 10 (3 , · 4
) 200 . 2003 4 25
7 5 3 . 200

173 86.5%

2)

4 (, , , , , ,) 41

. < -1> .

	()		
			1-1
			1-2
			2
	(5)		3
		가	4
			5-1
	(3)		5-2
	(3)		5-3
			6-1
			6-2
			6-3
			6-4
			6-5
			6-6
			6-7
			6-8
			6-9
(14)			6- 10
			6-11
			6- 12
			6- 13
			6- 14
			7-1
		-	7-2
			7-3
		•	7-4
			7-5
			7-6
			7-7
			7-8
(14)			7-9
			7- 10
			7-11
			7- 12
			7- 13
			7- 14
			8
	(2)		9
	(3)		10

3.

SPSSWIN 10.0

.

•

,

²(Chi-square) t (t-test),

(One-way ANOVA) .

(Correlation) ,

Scheffé . =.05, =.01, =.001

•

1.

< -1> .

가 69.9% , 30.1% .

가 64.2% , 35.8%

. プト 54.3%, 45.7% .

10 7 37.0% 7 , 21 31.8%,

11 20 31.2% .

< -1>

	()	(%)
	52	30.1
	121	69.9
	111	64.2
	62	35.8
	94	54.3
	79	45.7
10	64	37.0
11 20	54	31.2
21 30	44	25.4
31	11	6.4
	173	100.0

, , ,

1)

(1)

-2> 3.51 ,

(t=2.06, p<.05),

(t=2.06, p<.05), 가

(t=2.33,

p<.05), 7}

가

(F=9.40, p<.001), , 10

21 , 11 20 21 7[†] . , 21 21

< -2>

		n	Mean	SD	t (F)	p	Scheffé
		52	3.69	0.85	2.06	0.041*	
		121	3.44	0.69	2.00	0.041	-
		111	3.61	0.78	2.33	0.021*	
		62	3.34	0.68	2.33	0.021	-
		94	3.57	0.68	1 15	0.252	
		79	3.44	0.83	1.15	0.253	-
10		64	3.41	0.73			
11	20	54	3.30	0.77	9.40	0.000***	_
21		55	3.85	0.65			
		173	3.51	0.75			

* p<.05, ** p<.01, *** p<.001

(2)

< -3>

3.01 , 가

,

(F=7.25, p<.01),

, 10 21 , 11 20 21 가 . , 21

가 21

< -3>

		n	Mean	SD	t (F)	p	Scheffé
		52	3.19	0.84	1.95	0.053	
		121	2.93	0.82	1.93	0.055	-
		111	3.03	0.87	0.45	0.654	
		62	2.97	0.77	0.43	0.054	_
		94	3.12	0.79	1.02	0.055	
		79	2.87	0.87	1.93		-
10		64	2.83	0.83			
11	20	54	2.87	0.75	7.25	0.001**	-
21		55	3.35	0.82			_
		173	3.01	0.83			

* p<.05, ** p<.01, *** p<.001

(3)

< -4>

가

가 60.7%

,

28.1%,

6.7%,

4.5%

가

가 가

.

< -4>

	()	(%)
가	54	60.7
	6	6.7
	25	28.1
	4	4.5
	89	100.0

(4)

-5>プト 50.3% プト ,30.6%,プト ,6.4%

(²=12.68, p<.05), 가

. 10 11

.

- 45 -

< -5>

				가			² (df)	p
	12 (23.1) 41 (33.9)	32 (61.5) 55 (45.5)	5 (9.6) 6 (5.0)	2 (3.8) 16 (13.2)	1 (1.9) 3 (2.5)	52 (30.1) 121 (69.9)	7.62 (4)	0.107
	31 (27.9) 22 (35.5)	62 (55.9) 25 (40.3)	8 (7.2) 3 (4.8)	6 (5.4) 12 (19.4)	4 (3.6)	111 (64.2) 62 (35.8)	12.68 (4)	0.013*
	28 (29.8) 25 (31.6)	28 (29.8) 25 (31.6)	7 (7.4) 4 (5.1)	13 (13.8) 5 (6.3)	1 (1.1) 3 (3.8)	94 (54.3) 79 (45.7)	4.38 (4)	0.357
10	29 (45.3) 11	23 (35.9) 32	5 (7.8)	7 (10.9)	- 1	64 (37.0) 54	16.50	0.004*
21	(20.4) 13 (23.6)	(59.3) 32 (58.2)	(5.6) 3 (5.5)	(13.0) 4 (7.3)	(1.9) 3 (5.5)	(31.2) 55 (31.8)	(8)	0.036*
	53 (30.6)	87 (50.3)	11 (6.4)	18 (10.4)	4 (2.3)	173 (100.0)		

* p<.05, ** p<.01, *** p<.001

24.9%, 19.7%, 5.2% .

, ,

 $(^2=25.77, p<.001).$

가

가 ,

가 .

< -6> 가

							² (df)	р
	16 (30.8) 27 (22.3)	8 (15.4) 26 (21.5)	27 (51.9) 53 (43.8)	- 9 (7.4)	1 (1.9) 6 (5.0)	52 (30.1) 121 (69.9)	6.95 (4)	0.139
	28 (25.2) 15 (24.2)	19 (17.1) 15 (24.2)	53 (47.7) 27 (43.5)	6 (5.4) 3 (4.8)	5 (4.5) 2 (3.2)	111 (64.2) 62 (35.8)	1.37 (4)	0.850
	24 (25.5) 19 (24.1)	23 (24.5) 11 (13.9)	36 (38.3) 44 (55.7)	7 (7.4) 2 (2.5)	4 (4.3) 3 (3.8)	94 (54.3) 79 (45.7)	7.29 (4)	0.121
10	5 (9.4) 16 (29.6)	11 (17.2) 10 (18.5)	42 (65.6) 25 (46.3)	3 (4.7) 1 (1.9)	2 (3.1) 2 (3.7)	64 (37.0) 54 (31.2)	25.77 (8)	0.001**
21	21 (38.2) 43 (24.9)	13 (23.6) 34 (19.7)	13 (23.6) 80 (46.2)	(9.1) 9 (5.2)	3 (5.5) 7 (4.0)	55 (31.8) 173 (100.0)	(0)	

* p < .05, ** p < .01, *** p < .001

2)

(1)

< -7>

4.27 ,

, ,

•

< -7>

	n	Mean	SD	t(F)	p
	52	4.35	0.48	1.20	0.234
	121	4.23	0.62	1.20	
	111	4.31	0.55	1.23	0.221
	62	4.19	0.62	1.23	
	94	4.19	0.61	- 1.86	0.065
	79	4.35	0.53	- 1.60	
10	64	4.33	0.47		
11 20	54	4.13	0.62	2.20	0.114
21	55	4.33	0.64		
	173	4.27	0.58		

* p<.05, ** p<.01, *** p<.001

(2)

가

<

-8> 3.87 ,

(t=2.72, p<.01),

, ,

< -8>

	n	Mean	SD	t(F)	p
	52	4.10	0.63	2.72	0.007**
	121	3.78	0.74	2.72	0.007
	111	3.94	0.75	1 57	0.118
	62	3.76	0.64	1.57	0.116
	94	3.86	0.70	-0.22	0.825
	79	3.89	0.75	-0.22	
10	64	3.81	0.77		0.286
11 20	54	3.81	0.73	1.26	
21	55	4.00	0.64		
	173	3.87	0.72		

^{*} p<.05, ** p<.01, *** p<.001

(3)

<

, ,

< -9>

	n	Mean	SD	t(F)	p
	52	3.98	0.67	1.31	0.102
	121	3.83	0.68	1.51	0.193
	111	3.84	0.76	1.10	0.235
	62	3.95	0.49	- 1.19	
	94	3.81	0.66	1.50	0.137
	79	3.96	0.69	- 1.50	
10	64	3.84	0.65		0.156
11 20	54	3.78	0.72	1.88	
21	55	4.02	0.65		
_	173	3.88	0.68		

^{*} p < .05, ** p < .01, *** p < .001

3)

(1)

< -10> 2.98

가

•

(t=-2.27, p<.05), フト

,

< - 10>

		n	Mean	SD	t(F)	p
		52	2.90	1.01	0.72	0.464
		121	3.02	0.88	- 0.73	0.464
		111	2.86	0.95	2.27	0.024*
		62	3.19	0.85	- 2.27	
		94	2.89	0.97	1.20	0.168
		79	3.09	0.87	- 1.39	
10		64	3.03	0.94		
11	20	54	3.02	0.98	0.40	0.673
21		55	2.89	0.85		
·	·	173	2.98	0.92		

^{*} p<.05, ** p<.01, *** p<.001

(2)

< - 11>

3.31 ,

,

. 11

가 10

< - 11>

		n	Mean	SD	t(F)	p
		52	3.46	0.98	1.41	0.159
		121	3.25	0.88	1.41	
		111	3.26	0.96	0.08	0.328
		62	3.40	0.82	- 0.98	0.326
		94	3.48	0.94	2.67	0.008**
		79	3.11	0.85	2.67	
10		64	3.14	0.91		0.165
11	20	54	3.43	0.88	1.82	
21		55	3.40	0.93		
		173	3.31	0.91		

^{*} p<.05, ** p<.01, *** p<.001

(3)

< - 12>

3.71 ,

, ,

- 51 -

< - 12>

	n	Mean	SD	t(F)	p
	52	3.87	0.77	1.77	0.078
	121	3.64	0.79	1.//	0.078
	111	3.71	0.78	0.15	0.884
	62	3.69	0.80	0.15	
	94	3.68	0.86	- 0.45	0.652
	79	3.73	0.69	- 0.43	
10	64	3.72	0.81		
11 20	54	3.69	0.82	0.03	0.973
21	55	3.71	0.74		
_	173	3.71	0.78		

^{*} p<.05, ** p<.01, *** p<.001

(4)

< - 13>

3.62 ,

, ,

•

< - 13>

	n	Mean	SD	t(F)	p
	52	3.69	0.83	0.77	0.442
	121	3.59	0.82	0.77	0.442
	111	3.67	0.83	1.03	0.305
	62	3.53	0.80	1.03	0.303
	94	3.56	0.84	0.05	0.343
	79	3.68	0.81	- 0.95	
10	64	3.67	0.86		
11 20	54	3.56	0.82	0.29	0.749
21	55	3.62	0.80		
	173	3.62	0.82		

* p<.05, ** p<.01, *** p<.001

(5) < - 14>

4.24 ,

(t=3.59, p<.001),

가

(t=3.43, p<.01),가

< - 14>

	n	Mean	SD	t(F)	p
	52	4.50	0.54	2.50	0.000***
	121	4.12	0.67	3.59	
	111	4.36	0.61	2.42	0.001**
	62	4.02	0.67	3.43	0.001
	94	4.19	0.64	1.00	0.319
	79	4.29	0.66	- 1.00	
10	64	4.28	0.63		
11 20	54	4.17	0.64	0.48	0.621
21	55	4.25	0.70		
	173	4.24	0.65		

^{*} p<.05, ** p<.01, *** p<.001

(6) - 15> <

3.82 ,

•

(t=3.69, p<.001),

가

(F=4.90, p<.01).

, 11 20 21

가

21 21

. ,

.

< - 15>

		n	Mean	SD	t(F)	p	Scheffé
		52	4.13	0.69	2.60	0.000***	
		121	3.69	0.75	3.69	0.000	-
		111	3.87	0.79	1 22	0.220	
		62	3.73	0.71	1.23	0.220	-
		94	3.77	0.78	1.04	0.202	
		79	3.89	0.73	- 1.04	0.302	_
10		64	3.80	0.72			
11	20	54	3.61	0.86	4.90	0.009**	-
21		55	4.05	0.65			
		173	3.82	0.76			

^{*} p<.05, ** p<.01, *** p<.001

(7)

< - 16>

3.53 ,

가

(F=5.00, p<.01).

21 가 . , 21

21

< - 16>

	n	Mean	SD	t(F)	p	Scheffé
	52	3.58	0.82	0.49	0.626	
	121	3.51	0.79	0.49	0.020	-
	111	3.51	0.81	- 0.40	0.687	
	62	3.56	0.78	-0.40	0.067	-
	94	3.52	0.76	0.10	0.850	-
	79	3.54	0.84	- 0.19		
10	64	3.31	0.77			
11 20	54	3.56	0.86	5.00	0.008**	-
21	55	3.76	0.69			
	173	3.53	0.80			

^{*} p<.05, ** p<.01, *** p<.001

(8)

<

- 17> 3.96 ,

, , ,

. , , ,

< - 17>

	n	Mean	SD	t(F)	p
	52	4.06	0.75	1.20	0.200
	121	3.92	0.61	1.29	0.200
	111	3.97	0.69	0.26	0.721
	62	3.94	0.60	0.36	
	94	3.98	0.64	0.42	0.677
	79	3.94	0.69	0.42	
10	64	3.94	0.61		
11 20	54	3.89	0.63	0.92	0.402
21	55	4.05	0.73		
	173	3.96	0.66		

^{*} p<.05, ** p<.01, *** p<.001

(9)

< - 18>

	n	Mean	SD	t(F)	p
	52	4.21	0.57	2.49	0.014*
	121	3.95	0.66	2.49	0.014
	111	4.11	0.61	2.20	0.029*
	62	3.89	0.68	2.20	
	94	3.97	0.61	- 1.36	0.175
	79	4.10	0.67	- 1.50	
10	64	4.06	0.64		0.133
11 20	54	3.89	0.63	2.04	
21	55	4.13	0.64		
	173	4.03	0.64		

* p<.05, ** p<.01, *** p<.001

(10)

< - 19> 3.76 , フト .

, ,

< - 19>

		n	Mean	SD	t(F)	p
		52	3.88	0.73	1.38	0.168
		121	3.71	0.77	1.56	
		111	3.83	0.77	1.52	0.129
		62	3.65	0.73	1.53	0.128
		94	3.71	0.78	- 0.95	0.344
		79	3.82	0.73	- 0.93	
10		64	3.78	0.74		
11	20	54	3.61	0.76	1.90	0.153
21		55	3.89	0.76		
		173	3.76	0.76		

^{*} p<.05, ** p<.01, *** p<.001

$$(F=5.21, p<.01).$$
 , 11 20

< -20>

		n	Mean	SD	t(F)	p	Scheffé	
		52	4.00	0.66	0.81	0.418		
		121	3.90	0.77	0.81	0.418	-	
		111	4.05	0.73	2.79	0.006**	-	
		62	3.73	0.71	2.19	0.000		
		94	3.85	0.72	1.56	0.121	-	
		79	4.03	0.75	- 1.56	0.121		
10		64	3.86	0.77				
11	20	54	3.76	0.70	5.21	0.006**	-	
21		55	4.18	0.67				
		173	3.93	0.74				

^{*} p<.05, ** p<.01, *** p<.001

(12)

<

<

-21> 3.80 ,

가 .

, , ,

< -21>

	n	Mean	SD	t(F)	p
	52	3.75	0.74	0.67	0.504
	121	3.83	0.67	- 0.67	0.504
	111	3.80	0.71	0.04	0.966
	62	3.81	0.65	- 0.04	
	94	3.76	0.63	1.01	0.316
	79	3.86	0.75	- 1.01	
10	64	3.88	0.77		0.080
11 20	54	3.63	0.62	2.56	
21	55	3.89	0.63		
	173	3.80	0.69		

^{*} p<.05, ** p<.01, *** p<.001

(13)

-22> 4.06 ,

- 22> 4.06 , 7\ .

, , ,

< -22>

	n	Mean	SD	t(F)	p
	52	4.15	0.54	1.34	0.182
	121	4.02	0.60	1.54	
	111	4.09	0.53	0.80	0.425
	62	4.02	0.67	0.80	
	94	4.03	0.59	0.70	0.437
	79	4.10	0.57	- 0.78	
10	64	4.09	0.53		
11 20	54	3.93	0.58	2.45	0.090
21	55	4.16	0.63		
	173	4.06	0.58		

* p<.05, ** p<.01, *** p<.001

(14)

< -23> 4.18 , 7†

.

 $(t=2.79,\ p<.01),$ 7\dagger .

(t=3.94, p<.001), フト

가 .

가 가

•

(F=6.51, p<.01). , 11 20 21 7\; , 21

21 가

•

< -23>

		n	Mean	SD	t(F)	p	Scheffé
		52	4.40	0.60	2.79	0.006**	
		121	4.09	0.71			-
		111	4.33	0.62	3.94	0.000***	
		62	3.92	0.73			-
		94	4.15	0.67	- 0.75	0.456	
		79	4.23	0.72			-
10		64	4.14	0.66			
11	20	54	3.98	0.69	6.51	0.002**	-
21		55	4.44	0.66			
	·	173	4.18	0.69			

^{*} p<.05, ** p<.01, *** p<.001

4)

(1)

< -24>

3.75 ,

가 .

가

· 가

.

21 가

가가 , 11 20 가 10

· 가

< - 24>

		n	Mean	SD	t(F)	p
		52	3.90	0.63	1.06	0.053
		121	3.69	0.75	1.96	
		111	3.77	0.67	0.33	0.743
		62	3.73	0.81	0.55	
		94	3.73	0.72	- 0.34	0.732
		79	3.77	0.73		
	10	64	3.88	0.72	2.27	0.107
	11 20	54	3.59	0.74		
	21	55	3.76	0.69		
	_	173	3.75	0.72		

* p<.05, ** p<.01, *** p<.001

(2) -

-

< -25>

4.07 ,

.

, , ,

.

< -25> -

		n	Mean	SD	t(F)	p
		52	4.12	0.73	0.60	0.550
		121	4.05	0.63	0.60	0.550
		111	4.11	0.65	1.03	0.304
		62	4.00	0.68		
		94	4.03	0.66	- 0.81	0.418
		79	4.11	0.66		
	10	64	4.11	0.62	0.28	0.755
	11 20	54	4.07	0.70		
	21	55	4.02	0.68		
		173	4.07	0.66		

(3)

<

- 26> 4.08 ,

(t=2.71, p<.01),

(t=2./1, p<.01), 가

. (t=2.21, p<.05),

가

< -26>

		n	Mean	SD	t(F)	p
_		52	4.27	0.60	2.71	0.007**
		121	3.99	0.63	2./1	
		111	4.15	0.59	2.21	0.029*
		62	3.94	0.67		
		94	4.05	0.65	- 0.50	0.618
		79	4.10	0.61		
	10	64	4.03	0.64	1.17	0.313
	11 20	54	4.02	0.60		
	21	55	4.18	0.64		
		173	4.08	0.63		

^{*} p<.05, ** p<.01, *** p<.001

(4) ·

< -27> 3.86 ,

< -27>

			n	Mean	SD	t(F)	p
			52	4.00	0.59	1.64	0.102
			121	3.83	0.73	1.64	0.103
			111	3.86	0.72	- 0.58	0.564
			62	3.92	0.64		
			94	3.84	0.72	- 0.79	0.430
			79	3.92	0.66		
	10		64	3.89	0.72		
	11	20	54	3.83	0.80	0.18	0.838
	21		55	3.91	0.55		
	·		173	3.88	0.69		

^{*} p<.05, ** p<.01, *** p<.001

(5)

- 28> 3.57 , プト

, , ,

< - 28>

		n	Mean	SD	t(F)	p
		52	3.48	0.83	0.00	0.322
		121	3.61	0.78	- 0.99	
		111	3.58	0.78	0.10	0.924
		62	3.56	0.82		
		94	3.50	0.88	- 1.34	0.183
		79	3.66	0.68		
	10	64	3.61	0.75	0.76	0.470
	11 20	54	3.46	0.88		
	21	55	3.64	0.75		
	_	173	3.57	0.79		

* p<.05, ** p<.01, *** p<.001

(6)

•

<

-29> 3.32 , ·

.

, , ,

< -29> •

		n	Mean	SD	t(F)	p
		52	3.29	0.80	0.29	0.708
		121	3.34	0.81	- 0.38	
		111	3.32	0.79	0.01	0.989
		62	3.32	0.84		
		94	3.26	0.83	- 1.22	0.225
		79	3.41	0.78		
	10	64	3.27	0.84	0.26	0.768
	11 20	54	3.35	0.80		
	21	55	3.36	0.78		
	_	173	3.32	0.81		

(7)

< -30>

3.54 , 가

•

(t=5.20, p<.001),

가 .

(t=3.31, p<.01), フト

•

가

. 21 가

가 , 11 20 가 10

< -30>

	n	Mean	SD	t(F)	p
	52	3.92	0.48	5.20	0.000***
	121	3.38	0.89	3.20	
	111	3.70	0.73	2.21	0.001**
	62	3.26	0.90	3.31	
	94	3.49	0.88	- 0.94	0.349
	79	3.61	0.76		
10	64	3.59	0.85	2.29	0.105
11 20	54	3.35	0.85		
21	55	3.67	0.75		
	173	3.54	0.82		

^{*} p<.05, ** p<.01, *** p<.001

, , 가 .

< -31>

	n	Mean	SD	t(F)	p	
	52	3.92	0.68	3.19	0.002**	
	121	3.55	0.79	3.19	0.002	
	111	3.73	0.71	1.52	0.128	
	62	3.53	0.86	1.53	0.126	
	94	3.62	0.80	0.79	0.429	
	79	3.71	0.74	- 0.78	0.438	
10	64	3.80	0.76			
11 20	54	3.48	0.88	2.49	0.086	
21	55	3.67	0.64			
	173	3.66	0.77			

^{*} p < .05, ** p < .01, *** p < .001

(9) < -32> 3.61 ,

.

(t=3.26, p<.01),

가 .

(t=3.80, p<.001), 7ト

, 가 .

< -32>

		n	Mean	SD	t(F)	p	
		52	3.87	0.63	3.26	0.001**	
		121	3.50	0.75	3.20	0.001	
		111	3.77	0.74	3.80	0.000***	
		62	3.34	0.65	3.80	0.000	
		94	3.56	0.71	0.05	0.242	
		79	3.67	0.76	- 0.95	0.342	
10		64	3.55	0.75			
11	20	54	3.50	0.80	2.73	0.068	
21		55	3.80	0.62			
		173	3.61	0.74			

* p<.05, ** p<.01, *** p<.001

(10)

< -33>

4.05 ,

(t=2.97, p<.01),

가 .

(t=2.11, p<.05),

가 .

,

< -33>

	n	Mean	SD	t(F)	p	
	52	4.29	0.64	2.97	0.003**	
	121	3.95	0.71	2.97	0.003	
	111	4.14	0.67	2.11	0.037*	
	62	3.90	0.74	2.11	0.037	
	94	3.97	0.73	- 1.73	0.086	
	79	4.15	0.66	- 1./3	0.086	
10	64	4.11	0.62			
11 20	54	3.91	0.83	1.69	0.187	
21	55	4.13	0.64			
_	173	4.05	0.70			

* p<.05, ** p<.01, *** p<.001

(11)

<

-34> 3.75 ,

가 .

(t=2.48, p<.05),

가 가 .

, , 가 .

< -34>

	N	Mean	SD	t(F)	p	
	52	3.96	0.74	2.49	0.014*	
	121	3.66	0.73	2.48	0.014	
	111	3.82	0.75	1.63	0.104	
	62	3.63	0.71	1.03	0.104	
	94	3.70	0.75	- 0.96	0.341	
	79	3.81	0.74	- 0.90	0.541	
10	64	3.75	0.71			
11 20	54	3.63	0.76	1.48	0.231	
21	55	3.87	0.75			
	173	3.75	0.74			

< -35>

2.96 ,

, , ,

.

< -35>

	n	Mean	SD	t(F)	p	
	52	3.08	0.90	1 10	0.239	
	121	2.91	0.84	1.18	0.239	
	111	2.96	0.91	0.00	0.029	
	62	2.95	0.76	0.09	0.928	
	94	2.89	0.77	1 10	0.272	
	79	3.04	0.95	- 1.10	0.272	
10	64	3.14	1.04			
11 20	54	2.87	0.78	2.32	0.102	
21	55	2.84	0.66			
	173	2.96	0.86			

^{*} p < .05, ** p < .01, *** p < .001

(13)

< -36> 3.51 , フト .

, , ,

(F=3.31, p<.05).

< -36>

		n	Mean	SD	t(F)	p	Scheffé
		52	3.50	0.73	0.16	0.870	
		121	3.52	0.78	- 0.16	0.870	-
		111	3.48	0.80	0.96	0.393	
		62	3.58	0.69	- 0.86	0.393	-
		94	3.48	0.74	- 0.67	0.501	
		79	3.56	0.78	- 0.07	0.501	-
10		64	3.69	0.79			
11	20	54	3.33	0.61	3.31	0.039*	-
21		55	3.49	0.81			
		173	3.51	0.76			

* p<.05, ** p<.01, *** p<.001

(14)

< -37> 3.69 ,

.

(t=4.06, p<.001),

가

.

, , 가 .

< -37>

	n	Mean	SD	t(F)	p	
	52	3.98	0.58	4.06	0.000***	
	121	3.57	0.68	4.00	0.000	
	111	3.74	0.70	1 17	0.242	
	62	3.61	0.64	1.17	0.242	
	94	3.64	0.73	1 10	0.242	
	79	3.76	0.60	- 1.18	0.242	
10	64	3.78	0.68			
11 20	54	3.59	0.74	1.14	0.322	
21	55	3.69	0.60			
	173	3.69	0.68			

* p<.05, ** p<.01, *** p<.001

5)

(1)

< -38>

가 48.0% 가

, 23.7%,

17.9%,

10.4%

 $(^2=15.29, p<.01),$

가

,

,

,

< -38>

						² (df)	p
	3 (5.8) 15 (12.4)	6 (11.5) 35 (28.9)	17 (32.7) 14 (11.6)	26 (50.0) 57 (47.1)	52 (30.1) 121 (69.9)	15.29 (3)	0.002**
	9 (8.1) 9 (14.5)	20 (18.0) 21 (33.9)	26 (23.4) 5 (8.1)	56 (50.5) 27 (43.5)	111 (64.2) 62 (35.8)	11.42	0.010°
	9 (9.6) 9 (11.4)	18 (19.1) 23 (29.1)	19 (20.2) 12 (15.2)	48 (51.1) 35 (44.3)	94 (54.3) 79 (45.7)	2.95	0.400
10	4 (6.3)	24 (37.5)	8 (12.5)	28 (43.8)	64 (37.0)		
11 20	(9.3) 9 (16.4)	13 (24.1) 4 (7.3)	10 (18.5) 13 (23.6)	26 (48.1) 29 (52.7)	54 (31.2) 55 (31.8)	16.98 (6)	0.009**
	18 (10.4)	41 (23.7)	31 (17.9)	83 (48.0)	173 (100.0)		

^{*} p<.05, ** p<.01, *** p<.001

(2) < 가 - 39> 가 51.4% 가 15.0%, 9.8%, 9.2%, 6.4% 8.1%, 가 $(^2=13.20, p<.05).$ 가 가 가 가 $(^{2}=21.35,$ p<.05). 가 , 21 가 20

- 74 -

< -39>

								(df)	p
	35 (67.3) 54 (44.6)	3 (5.8) 13 (10.7)	3 (5.8) 23 (19.0)	2 (3.8) 12 (9.9)	4 (7.7) 7 (5.8)	5 (9.6) 12 (9.9)	52 (30.1) 121 (69.9)	10.72 (5)	0.057
	67 (60.4) 22 (35.5)	9 (8.1) 7 (11.3)	10 (9.0) 16 (25.8)	8 (7.2) 6 (9.7)	7 (6.3) 4 (6.5)	10 (9.0) 7 (11.3)	111 (64.2) 62 (35.8)	13.20 (5)	0.022*
	44 (46.8) 45 (57.0)	9 (9.6) 7 (8.9)	15 (16.0) 11 (13.9)	12 (12.8) 2 (2.5)	5 (5.3) 6 (7.6)	9 (9.6) 8 (10.1)	94 (54.3) 79 (45.7)	6.92 (5)	0.227
10	40 (62.5) 28 (51.9)	5 (7.8) 6 (11.1)	10 (15.6) 11 (20.4)	1 (1.6) 4 (7.4)	3 (4.7) 3 (5.6)	5 (7.8) 2 (3.7)	64 (37.0) 54 (31.2)	21.35 (10)	0.019°
21	21 (38.2) 89 (51.4)	5 (9.1) 16 (9.2)	5 (9.1) 26 (15.0)	9 (16.4) 14 (8.1)	5 (9.1) 11 (6.4)	10 (18.2) 17 (9.8)	55 (31.8) 173 (100.0)		

^{*} p<.05, ** p<.01, *** p<.001

(3)

-40> 가 가

<

35.3% 7[†] , 19.7%,

16.2%, 15.0%, 11.0%

•

, , ,

- 75 -

< -40>

									2	
									(df)	p
		12	12	10	5	1	12	52		
		(23.1)	(23.1)	(19.2)	(9.6)	(1.9)	(23.1)	(30.1)	7.57	0.182
		49	22	18	14	4	14	121	(5)	0.162
		(40.5)	(18.2)	(14.9)	(11.6)	(3.3)	(11.6)	(69.9)		
		35	25	18	10	5	18	111		
		(31.5)	(22.5)	(16.2)	(9.0)	(4.5)	(16.2)	(64.2)	6.70	0.244
		26	9	10	9		8	62	(5)	0.244
		(41.9)	(14.5)	(16.1)	(14.5)	-	(12.9)	(35.8)		
		32	18	16	8	5	15	94		
		(34.0)	(19.1)	(17.0)	(8.5)	(5.3)	(16.0)	(54.3)	5.67	0.340
		29	16	12	11		11	79	(5)	0.540
		(36.7)	(20.3)	(15.2)	(13.9)	-	(13.9)	(45.7)		
10		23	14	16	7		4	64		
10		(35.9)	(21.9)	(25.0)	(10.9)	_	(6.3)	(37.0)		
11 2	0	18	8	6	8	3	11	54	15.80	0.105
11 2		(33.3)	(14.8)	(11.1)	(14.8)	(5.6)	(20.4)	(31.2)	(10)	0.103
21		20	12	6	4	2	11	55		
21		(36.4)	(21.8)	(10.9)	(7.3)	(3.6)	(20.0)	(31.8)		
		61	34	28	19	5	26	173		
		(35.3)	(19.7)	(16.2)	(11.0)	(2.9)	(15.0)	(100.0)		

^{*} p<.05, ** p<.01, *** p<.001

3.

1)

, ,

, 가

,

,

가

21 가 가 가 60.7% 가 가 가 11 가 가 가 가 가 가

·

가

2)

가,

, , ,

,

, 가 .

,

가 , 가

3)

,

가 (1) S/W 가 가 가 가 (2) 가

- 79 -

(3)

가 ,

,

가

, , ,

(4)

가 . 가 , . .

, 가 가 . 가

· 가 ,

, , . . 가

・ 가 21 가

(5)

가 , . .

· ,

, , 21 가 가

.

•

4)(1)

가 , -, , ,

. 가

.

가 ·

, 가 ·

, , ,

가 ,

(3) 가 , 가 가 .

.

가 .

, 가 . (4) 가 가 가 (5) 가 가 10 가 가 가 가 10 가 가 가 가

5)

가 가 가 가 가 가 가 가 가 가 가

가 가

•

가 가 .

. 가 .

, 21

,

,

,

.

,

,

, , ,

39 .

· , · 176

, , , x^2 (Chi-square) t ,

(One-way ANOVA)

2.

, 가 , ,

가 ,

가 .

,

가 .

, 가 . , 가

,

, 가

, , ,

가 , 가

. , 21 가

, 가 .

, 가 가 .

가 .

•

, 21 가

- 89 -

21 가 가 가 가 가 가 가 가 가 가 21

, 가 .

가

***	***		
,		, : , 1986	
,		, : , 1983	
,		, : , 1984	
,		, :	, 1981
,		, .	, 1981
	,	, : , 199	
,		, :	, 1985
		, :	, 1961
,	•	: , 1999	,
,	•	,	: , 1998
,		, : , 19	
,	. ,	,	, .
	1975		•
,		, : , 1998	
,		, : , 1989	
,	,	, : , 19	986
	,	,	, 1995
		, : , 199	
	,	, : , 1968	
,		. 1083	
,	21C	, ;	, 2001
,	210	가 , : , 1998	, 2001
,		: , 1982	
Hovle ,	E The Ro	le of the Teacher, London	on: Routledge and Kegan
110/10.	Paul, 1972	or the Toucher, Donat	modicago una mogun
Naishitt		gatrends, New York: Warn	er Books, 1982
	, 1,106	,	

Peter F. Drucker, Post-Capitalist Society, New York, 1993

Toffler. Alvin, The Third Wave, London: Pan, 1980

```
OECD
                             가
                                                          J ,
       , 1998
, г
                                                      J,
                   , 2001
                                            J ,
       , 1996
                                                          , 1999
                             가
                                      J ,
                          , 2002
                                                  , 2000
                J,
, <sup>r</sup>21
                                                      , 2001
           J ,
                          가
                 , 2001
           Γ
                                                            J ,
                       , 1961
, г
                                             J,
            , 1977
                                                                 J ,
                          , 2002
, г
                                                                   J ,
                                              , 1993
                                                J ,
  1999
  <sup>r</sup> 21
                                                           , 2001
                                         J ,
  , г
                                                 J ,
  1997
   , г
                                                               J ,
                                              , 1998
```

, 2002 J , ١, , 1998 , 2002 , 2002 , 2002 , 1999 J , , 2002 , ^r21 J , , 1999 가 98 , 1987 , 1999 2 (堀內 孜),「21 , 2001

ABSTRACT

A Study on Perception of Teacher-Role Change in Knowledge-Based Society

Gweon Gi-hyeon
Educational Administration Major
Graduate School of Education
Gyeongju University

The 21st century's society is knowledge-based, which means that competitiveness hinges on creativity, knowledge and technology. And that calls on education and school to change. School change is necessarily reliant on teacher role change. Even the best educational reform efforts and policies couldn't work if teacher remains unchanged.

The purpose of this study was to delve into the 21st century's knowledge-based society in a bid to define changing teacher role. And it's additionally meant to examine the way teachers looked at that in order to lay the foundation for furthering their role performance.

To build a theoretical background, it's attempted to review earlier studies on the concept and characteristics of knowledge-based society, human image pursued by that, the direction of school education, educational reform, general teacher role and qualifications, and what type of teacher role and qualifications knowledge-based society called for.

On that theoretical base, articles, literature, law and all sorts of

relevant data were gathered and analyzed. After existing articles were prepare questionnaire with good validity, 39-item analyzed to questionnaire was constructed, which covered understanding of knowledge-based society, teacher role change, general teacher role qualifications, specific teacher role and qualifications and knowledge-based society, and obstacles to role performance. The subjects in this study were 176 teachers from public and private elementary and secondary schools in south Gyeongsang province. The collected data were analyzed by school grade, the type of school foundation, teacher gender and career. And x2(Chi-square) test, t-test and one-way ANOVA were employed to track intergroup gaps.

The findings of this study were as follows:

First, the teachers investigated were generally aware of the emergence of knowledge-based society, and thought such a society required to nurture creative people and teach students to gather a wide variety of information, acquire knowledge and have information literacy. Nonethe- less, they didn't have a good understanding of in which direction national educational reform and policies were leading. Moreover, they distrusted educational policy and reform.

Second, they believed teacher role should change to comply with the fashion of the day. And they also felt that teacher role was still important in knowledge-based society and there should be drastic change in that.

Third, in order to bring any changes to teacher role and qualifications in shifting society, what types of role and qualifications

had traditionally been stressed should be understood first.

Fourth, they weren't ready for change due to their lack of confidence in educational policy and reform. Heavy non-essential workload and teaching load resulted in undermining their role performance, and teacher's change of mind-set was looked upon as the first step to bring a change to teacher role.

[]

?

21

.

.

2002 4

() · ()

() ()

() ()

() ()

10 () 11 20 ()
21 30 () 31 ()

[] 21	•		,			,	,	
가					가 ·			,	,
	•				-				
1.							•		
1- 1									
1- 2					가				
2	· ·				 가			?	
2.		가						!	
					٠				
_	(•)
3.								?	
			가						
	()
4.		?				가		가	
_									
	()

5.

5- 1			
5-2			
5-3			

6. .

6- 1				
6-2				
6-3	·			
6-4				
6-5				
6-6				
6-7				
6-8	•			
6-9				
6- 10	가 ·			
6- 11				
6- 12	가 ·			
6- 13				
6- 14				

7.

1.	•			•
7- 1				
7-2				
7-3	가 ·			
7-4				
7-5				
7-6	•			
7-7	·			
7-8	가 .			
7-9				
7- 10				
7-11				
7- 12				
7- 13				
7- 14	,			

8. ______ 가 가 ?

- 100 -

9.		71	/t		
	?				
	()
10.				가	
		?			
					`

·