碩士學位 請求論文

 Laser
 石造文化財

 汚染物
 除去
 關
 研究

慶州大學校 大學院

文化財學科

金振 亨

指導教授 韓 京 淳

2003年 7月

 Laser
 石造文化財

 汚染物
 除去
 關
 研究

慶州大學校 大學院

文化財學科

金振 亨

論文 碩士學位 論文 提出

指導教授 韓京淳

2003年 7月

金振亨 碩士學位論文 認准

委 員 長_	
審査委員_	
審査委員	

慶州大學校大學院

2003年 7月 **碩士學位 請求論文**

_	_

	• • • • • • • •	• •	•	•		• •	•	•	•	•	•	•	•	• •1
1.		•	•	•	•	•	•	•	•	•	•	•	•	• 1
1)	• • • •		•	•	, ,			•	•	•	•	•	•	• •1
2)	• • • •		•	•	, ,			•	•	•	•	•	•	• •2
3)										•	•	•	•	• •3
2.	• • • • • • •	•	•	•	•	•	•	•	•	•	•	•	•	•10
		•	•		•	•			•	•	•	•	•	•12
1.			•	•	•	•		•	•	•	•	•	•	•12
2.		•	•	•	•	•		•	•	•	•	•	•	•13
1)				•	•	•	•	•	•	•	•	•	•	•13
						•	•	•	•	•	•	•	•	•13
		•	•	•	•	•	•	•	•	•	•	•	•	•16
		•	•	•	•	•	•	•	•	•	•	•	•	•16
	(Absorptivity)			•	•	•	•	•	•	•	•	•	•	•17
				•	•	•	•	•	•	•	•	•	•	•17
			•	•	•	•	•	•	•	•	•	•	•	•18
				•	•	•	•	•	•	•	•	•	•	•18
2)		•	•	•	•	•	•	•	•	•	•	•	•	•18
					•	•	•	•	•	•	•	•	•	•18
		•	•	•	•	•	•	•	•	•	•	•	•	•20
	• • • •	•	•	•	•	•	•	•	•	•	•	•	•	•20
		•	•	•	•	•		•	•	•		•	•	•20

				•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•21
1.															•	•	•	•	•	•	•21
2.																•	•	•	•	•	•25
1)									•	•	•	•	•	•	•	•	•	•	•	•	•25
2)															•	•	•	•	•	•	•40
3.											•	•	•	•	•	•	•	•	•	•	•52
1)									•	•	•	•	•	•	•	•	•	•	•	•	•52
					•			•	•	•	•	•	•	•	•	•	•	•	•	•	•52
											•	•	•	•	•	•	•	•	•	•	•54
										•	•	•	•	•	•	•	•	•	•	•	•55
										•		•	•	•	•	•	•	•	•	•	•59
2)											•	•	•	•	•	•	•	•	•	•	•60
																	•	•	•	•	•64
				•	•				•	•	•	•	•	•	•	•	•	•	•	•	
				•	•			• •	•	•	•	•	•	•		•	•		•	•	
. 1.				•	•		•	•	•	•	•	•	•	•		•	•	•	•	•	•64
1. 2.				•	•	•	• •	•	•	•	•					•	•	•	•	•	•64 •65
1. 2. 1)				•	•	•	•	•	•	•	•	•					•	•	•	•	•64 •65 •65
1. 2. 1) 2)				•	•			•	•	•	•	•					•	•	•	•	•64 •65 •65
1. 2. 1) 2)	. •	•		•	٠			•		•	•						•	•	•	•	•64 •65 •65
1. 2. 1) 2)	. •		• •	•	•			•	•	•							•	•	•	•	•64 •65 •65 •68
1. 2. 1) 2)	. •	•		•	•				•	•							•	•	•	•	•64 •65 •65 •68

<Abstract>

, 가 3

, , ,

- 1 -

```
가 14
                                                    (
 , 1998 ).
 2)
 1919
                                          가 1960
                                                      (
   , 1996 ). 1960
                                                가
                                          ( , 2003 ).
     SO_2,\ NO_2,\ O_3
                                 가
                   가,
                                      가
            , 1997 ).
가
                 SO_2, NO_x
                            HC
                                                   , 1988
                      SO_2
 ).
                           (EPA, 1969),
                   ( , 1980 ).
          1997 6
 1996
     1
                                                  가
          ( )
    7.7
            1.2
                           가
            (
                 , 1997 ),
```

, 酸

.

, (2)

.

가 , 1993 , 가

가 (, 1993) 가

가 1999 12

(3)

가

1995 6

3)

(24) . 1923

, 가 1934 (steam cleaning) .

1941

. 1947 , 1953 , 1957 . 5 , 1953 , 1954 6

4 . 1957 9 . ·

1958 1 14 가 가 , 가 가

,

가 (, 1970, 1971).

1977 가

, 가 . 前

, 가 . 90 (Table 1).

Table 1.

195		1977
194	, ,	1980
10		1980
197		1981
33 7}		1983
37		1983
87		1983
73		1983
137		1984
581		1985
846		1985
7		1986
581		1986
386		1986
395		1986
59		1987

12		1988
830	, , ,	1988
465		1988
43		1988
2 19		1988
84		1989
45		1989
2 19		1989
64		1989
679		1991
111		1991
122		1992
53		1992
53	가	1992
54	n	n
15 1	n	n

152	n n	11
153	п	n
154	n	n
981		1993
116		1993
136		1994
432		1995
112		1996
39		1996
200		1996
297		1996
126		1996
674		1996
387	, 가 ,	1997
139		1997
658		1998
39		1998

112		1998
132		1999
187		2000
139		2000
3 12		2001
35		2001
84		2001
54		2001
84	,	2001
97		2001
242	()	2001
	: (1977~20	02
		,
,	(Blasting)	

가 가 가 , 2002). (() 가 (, 2001). 가 (Hydrated phyllosilicates) 1~2

, 1998).

- 9 -

 μ m

mm

가 (, 2001).

가 .

Arthur Schwlow

(laser eraser)'

, 1972 John Asmus 가 가

·

가 (As mus

, J. F., 1987, 1999). Victoria & Albert

2

, . 1970 가 . 1990

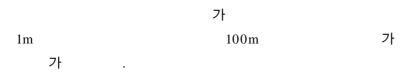
가

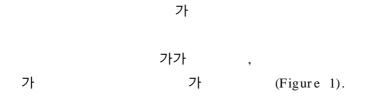
. 가

(micro-abrasive) (chemical flux)

가 가 , (Q-sw laser) 가 가 가 (surface relief) 가 가 , 2001). 2. (Hoecher, 1988). (Leysin et al., 1989). 가 가 가

- 11 -


1. 1) 가 (Optical Microscope, Carl Zeiss, Axiotech/Progress 3012, Germany) 50X . Х-X-(Micro-area X-ray diffraction system, MAC Science, MXP 18VA, Japan) . X-Target Cu . (peak matching) X . XRD Rigaku RINT 2200 X 40kV/30mA CuK_a (EDXRF) Х-가 chamber , 5 20 kV, 0.5mA, 300micro collimator Vacuum 100s e c


(ICP-AES)

```
50 mg
                                         100M€
                                    5M0 가 가
                                                        200℃
            (HNO_3)
                         (HF)
                                       (HNO_3) 3Me +
                                   가
                                               가
(HClO<sub>4</sub>) 5Me
            가
     , 100g
                           (SPS 1500R, Japan)
1.3 1kW,
           가 18 ℓ / min,
                                가 0.5 l/min,
                                                    가
                                                        1.0 ℓ
/min,
           12.4\,\mathrm{mm} ,
                          K, Na
                                        1.7kW
                                        SEM(Scanning Electron
Microscope, Jeol, JSM-5910LV, Japan)
           EDS(Energy Dispersive Spectroscope, Oxford 7324,
                                        20kV, spotsize
                                                       50
England)
                     mapping
2.
1)
          가
       (Maiman
       (spontaneous emission)
```

가), (stimulated emission) 가 (light amplification) (694nm) (780-1600nm) Nd:YAG (1064nm), (CO₂) $(10.6\mu\text{m})$, (excimer)) He-Ne (633nm) (300-1000nm)가 . (Monochromaticity), (Coherence), (Directionality) 가 . (Chromatic aberration) (W/cm^2) (位相)

- 14 -

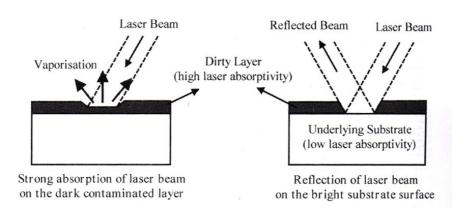


Figure 1.

, 가 가 . 가가 가 . 가

가 가 YAG 가 $0.5 \sim 2J/\text{ cm}^2$ 20 5 mm,

가

1)

2), 3) 4)

 $40\,\mathrm{mm}{\times}40\,\mathrm{mm}$

 $\times 20\,\text{mm}$

가

Q-Switched Nd-YAG(Neodymium-Yttrium Aluminum Garnet) Laser(Light Amplification by Stimulated Emission of (日本赤外線株式會社, Japan). Radiation)

Wavelength): 1064nm, (Output (Energy Output):

1 (packstone)

0.004mm limemud(

2

0.1 2.5mm

3

가

가

```
0-300mJ, (Repetition Rates): 1-10Hz, (Pulse Duration):
6ns
           (Absorptivity)
                                   가
                            가
            (Monochromaticity)
  4가
         (色)
                                                            (鐵
片)
                4가
                                    色
                                   (chromatic aberration)
                                                         가
                                          )
                    (W/cm^2)
                                        . 가假 ( )
                              10\,\mathrm{mm}
                                                       10
```

- 17 -

,

汁假

.

, 5 , 4

2)

(Figure 2).

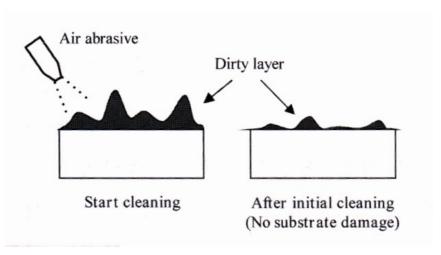


Figure 2.

shape : spherical

colour : transparent, white hardness : rockwell C 46

: Mohs 6 - 7

 $\begin{array}{lll} \text{specific density} & : 2.5 \text{ kgs/dm}^3 \\ \text{loose bulk density} & : 1.5 \text{ kgs/dm}^3 \end{array}$

SiO_2	: min.	65.0%
Na_2O	: min.	14.0%
CaO	: min.	8.0%
MgO	: min.	2.5%
Al_2O_3		2.0%
Fe_2O_3	: max.	0.15%
Other	: max.	2.0%

가 가

1 ~	50 micron	150 ~ 250 micron
40~	70 micron	200 ~ 300 micron
50 ~	105 micron	200 ~ 400 micron
70 ~	110 micron	300 ~ 400 micron
90 ~	150 micron	400 ~ 600 micron
100 ~	200 micron	400 ~ 800 micron

 $40\text{mm}{\times}40\text{mm}{\times}20\text{mm}$

Sand Blaster(IBIX, Norway)

2~7 bars 250Liters/min

Plastic $1.4 \text{mm}(\emptyset)$.

 $2 \sim 3 \, \text{cm}$ $50 \, \text{cm} \qquad , \qquad 4b \, \text{ars}$ $. \qquad 7 \uparrow \qquad 7 \uparrow \qquad 7 \uparrow$

.

1.

1)

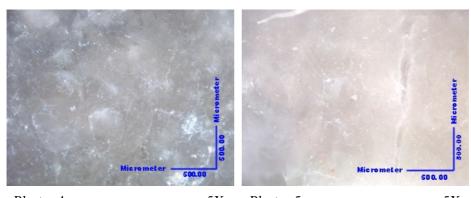


Photo 4. - - 5X Photo 5. - - 5X

가

가 .

2) X

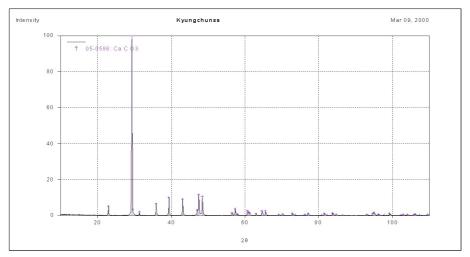


Figure 3. XRD - No. 1(Calcite)

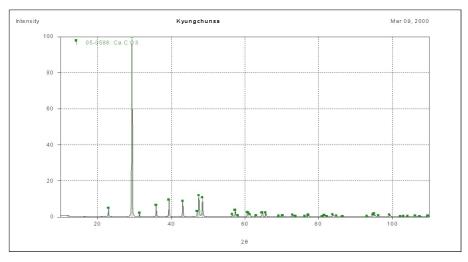


Figure 4. XRD - No. 2(Calcite)

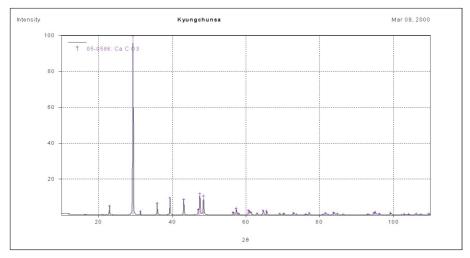


Figure 5. XRD - No. 3(Calcite)

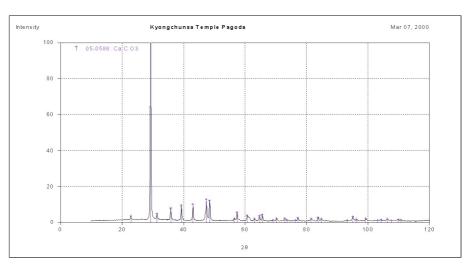


Figure 6. MXRD (Calcite)

3 Wide

Angle XRD (Figure 3, 4, 5)

Calcite가

Micro Area XRD Wide Angle XRD

Calcite (Figure 6)

.

3)

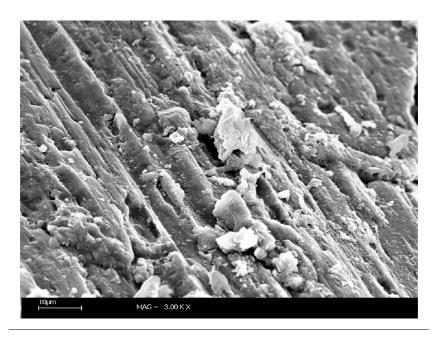


Photo 1. (3,000)

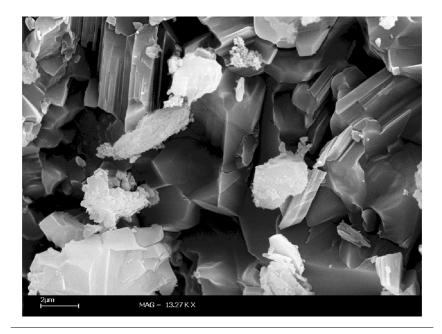


Photo 2. (13,270)

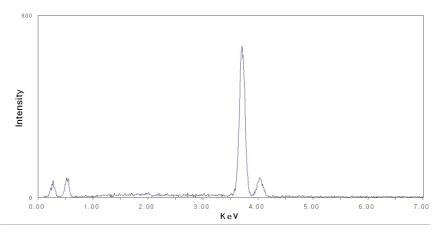


Figure 7. EDX

, EDX (Figure 7) Ca가 . (Calcite, CaCO3)

2.

1)

(Table 4)

가

가 .

,

가 .

·

(Photo 3).

가 .

. 가 가

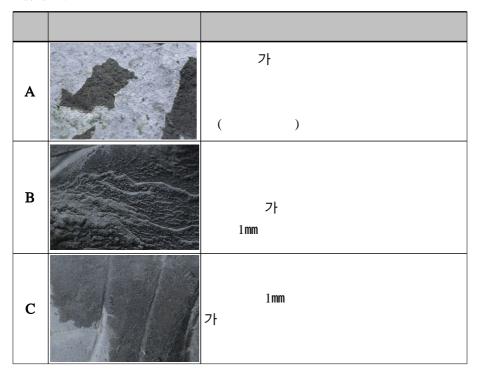

, 가 .

Photo 3 , 가

Photo 3. (3)

Table 2.

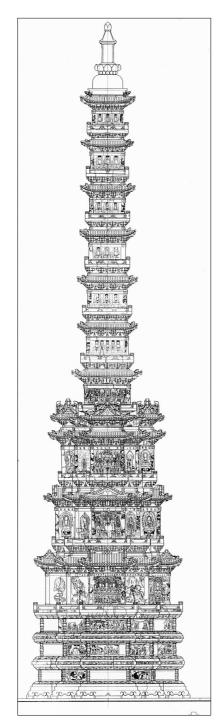
Table 3.

	1	2	3	4	5	
10mmX 10mm	100mm	200mm	300mmf	400mmf	500mm	

※ : 가

Table 4.

1	()	X	-	-	
2	()	X	-	-	
3	()	X	-	-	
4	()	X	-	-	1.
5	()	X	-	-	A type
6	()	X	-	-	
7	()	X	-	-	
8	()	X	-	-	
9	()	0	С	2	
10	()	0	D	1	
11	()	0	В	8	
12	()	0	В	10	1.
13	()	0	В	8	A type
14	()	0	С	8	
15	()	0	С	4	
16	()	0	С	1	
17	()	X	-	-	
18	()	X	-	-	
19	()	0	D	1	
20	()	X	-	-	1
21	()	X	-	-	A type
22	()	X	-	-	
23	()	0	D	2	
24	()	X	-	-	
25	()	0	C	10	
26	()	0	С	3	
27	()	0	В	16	
28	()	0	С	5	A 4
29	()	0	В	7	A type
30	()	0	В	5	
31	()	0	В	14	
32	()	0	В	3	
33	()	0	D	3	-
34	()	X	- D	- 1	
35	()	0 V	D	1	A type
36 37	()	X O	- D	- 2	1
38	()	X	D -	2 -	1
39	()	0	D	2	
27	()		<u> </u>	<u> </u>	


40		()	X	-	-	A
41		()	0	В	1	11
42		()	0	В	2	A type
43		()	0	В	1	
44		()	0	В	4	
45		()	0	C	3	
46		()	0	C	4	
47		()	0	В	3	
48		()	0	В	2	
49	1	()	0	С	5	
50	1	()	X	-	-	
5 1	1	()	0	С	8	
52	1	()	X	-	-	1
53	1	()	О	В	15	A type
54	1	()	О	В	5	
55	1	()	О	В	8	
56	1	()	О	В	8	
57	1	()	0	В	8	
58	1	()	О	C	8	A type
59	1	()	0	C	10	
60	1	()	O	C	6	
61	1	()	О	В	12	
62	1	()	0	C	14	
63	1	()	О	C	8	
64	1	()	O	В	10	
65	1	()	O	В	20	
66	1	()	O	В	10	A type
67	1	()	O	В	20	
68	1	()	0	В	10	
69	1	()	0	В	20	
70	1	()	0	В	10	
71	1	()	0	В	20	
72	1	()	O	В	10	
73	2	()	0	В	16	
74	2	()	O	В	6	1
75	2	()	0	В	3	A type
76	2	()	О	В	5	l'i type
77	2	()	O	В	5	
78	2	()	O	В	3	
79	2	()	0	В	15	A type
80	2	()	0	В	5	
81	2	()	O	В	10	

82	2	()	О	В	2	
83	2	()	0	В	8	1
84	2	()	О	В	6	1
85	2	()	O	В	8	A type
86	2	()	О	В	6	
87	2	()	О	В	25	
88	2	()	O	В	10	
89	2	()	O	В	25	
90	2	()	O	В	10	
91	2	()	O	В	25	A type
92	2	()	O	В	10	
93	2	()	O	В	25	
94	2	()	O	В	10	
95	3	()	O	В	10	
96	3	()	O	В	8	B type
97	3	()	O	В	10	
98	3	()	O	В	7	
99	3	()	O	A	8	
100	3	()	O	A	2	
10 1	3	()	O	A	5	
102	3	()	O	В	8]
103	3	()	O	В	5	A type
104	3	()	O	В	5	
105	3	()	O	В	8	_
106	3	()	O	В	6	
107	3	下()	О	A	25	
108	3	下()	O	A	5	
109	3	下()	O	В	32	
110	3	下()	О	A	5	A type
111	3	下()	О	В	32	1
112	3	下()	О	В	5	
113	3	下()	O	В	32	
114	3	下()	O	В	5	
115	3	上()	O	В	7	
116	3	上()	O	В	7	
117	3	上()	O	В	8	R type
118	3	上()	О	В	8	B type
119	4	()	X	-	-	
120	4	()	X	-	-	
12 1	4	()	О	В	3	R type
122	4	()	X	-	-	B type

123	4	()	О	В	20	
124	4	()	О	В	10	
125	4	()	О	В	15	D tour
126	4	()	О	В	5	B type
127	4	()	X	-	-	
128	4	()	О	В	10	
129	4	()	О	В	20	D tour
130	4	()	О	В	10	B type
13 1	5	()	X	-	-	
132	5	()	X	-	-	
133	5	()	X	-	-	D tuno
134	5	()	X	-	-	B type
135	5	()	О	В	5	
136	5	()	О	В	3	
137	5	()	O	В	5	D tuno
138	5	()	О	В	3	B type
139	5	()	O	В	15	
140	5	()	O	В	15	
14 1	5	()	O	В	15	D tuno
142	5	()	O	В	15	B type
143	6	()	O	C	3	
144	6	()	X	-	-	
145	6	()	O	В	5	D tuno
146	6	()	X	-	-	B type
147	6	()	O	A	5	
148	6	()	О	В	8	
149	6	()	О	В	10	D tuno
150	6	()	О	В	5	B type
15 1	6	()	O	В	15	
152	6	()	O	В	15	
153	6	()	O	В	15	B type
154	6	()	O	В	15	B type
155	7	()	O	C	1	
156	7	()	О	В	2	
157	7	()	О	В	3	B type
158	7	()	О	С	1	B type
159	7	()	О	В	3	
160	7	()	О	В	3	
161	7	()	О	С	3	B type
162	7	()	О	В	3	
163	7	()	О	В	15	

164	7	()	O	В	15	
165	7	()	O	В	15	B type
166	7	()	O	В	15	7 - 7 - 7
167	8	()	О	В	3	
168	8	()	X	-	-	B type
169	8	()	О	В	3] b type
170	8	()	X	-	-	
171	8	()	О	В	3	
172	8	()	О	В	2	B type
173	8	()	O	С	3	B type
174	8	()	О	В	1	
175	8	()	О	С	10	
176	8	()	О	В	10	
177	8	()	О	С	10	D trima
178	8	()	О	В	10	B type
179	9	()	О	В	1	
180	9	()	O	В	1	B type
181	9	()	O	В	3	
182	9	()	X	-	-	
183	9	()	O	В	5	
184	9	()	O	C	2	B type
185	9	()	O	C	5	
186	9	()	O	В	2	
187	9	()	O	В	10	
188	9	()	O	C	10	B type
189	9	()	O	С	10	
190	9	()	O	В	10	
191	10	()	O	A	3	
192	10	()	O	В	1	B type
193	10	()	O	В	3	
194	10	()	O	В	1	
195	10	()	О	В	2	
196	10	()	O	В	3	
197	10	()	O	С	3	B type
198	10	()	X	-	-	Біуре
199	10	()	О	В	10	
200	10	()	O	В	12	
201	10	()	O	В	12	R type
202	10	()	O	В	10	B type

* A-type: , B-type:

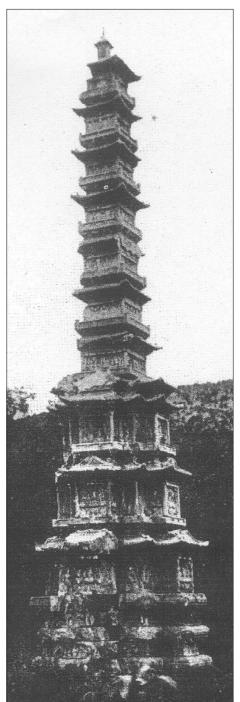


Photo 4.

Photo 5. 1902

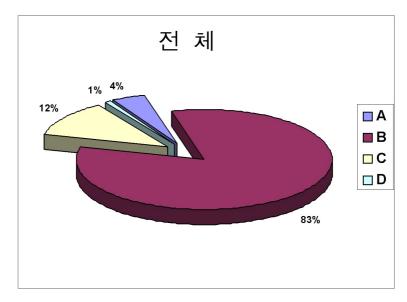
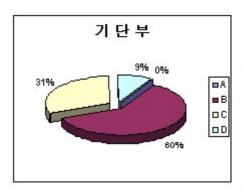



Figure 8.

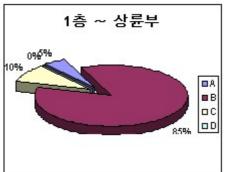


Figure 9.

Figure 10. (1 ~)

Figure 8 . Figure 8 . , $B(83\%) \quad C(12\%) \quad A(4\%) \quad D(1\%)$ $B \quad . \quad (1 \sim)$ $A(0\%), \quad (1 \sim) \quad B(85\%) \quad C(10\%) \quad A(5\%) \quad D(0\%)$

가 .

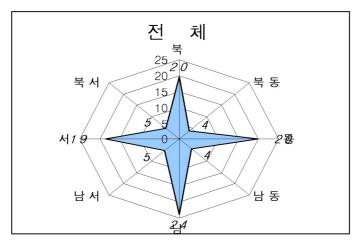
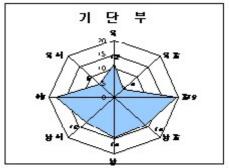



Figure 11. ()

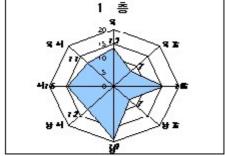


Figure 12.

Figure 13. 1

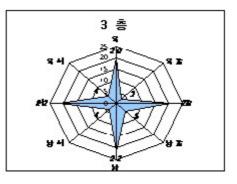
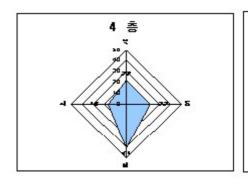



Figure 14. 2

Figure 15. 3

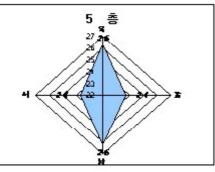
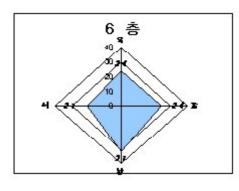



Figure 16. 4

Figure 17. 5

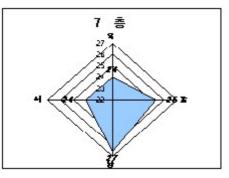
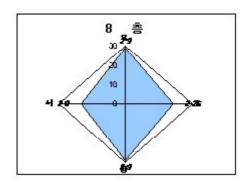



Figure 18. 6

Figure 19. 7

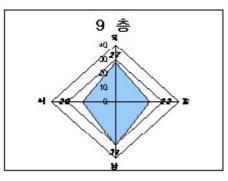


Figure 20.8

Figure 21. 9

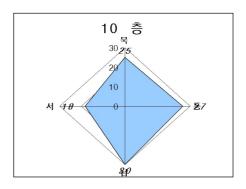



Figure 22. 10

Figure 11 가 24% 20%, 19% 5%, 4% 가 , 8 ~ 3 , 2 3 가 4 ~ 10 (31%) (20%) (25%) (24%) 41% 가 , 5 7

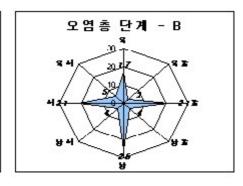



Figure 24. B

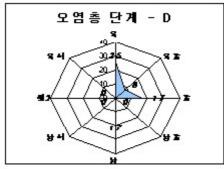


Figure 25. C

Figure 26. D

Figure 23~26 가 A (71%) (12%) (9%) A 가 В (25%) = (21%) (17%) 84%4 ~ 10 가 가 가 \mathbf{C} (23%) (19%) (18%) (16%), (33%) (25%) = (17%)D

,

•

2)

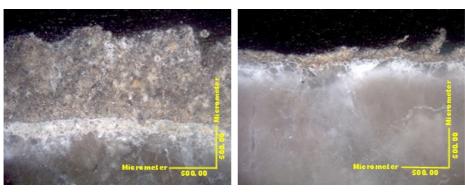


Photo 6. - - 5X Photo 7. - - 5X

. photo 6

 $100\,\mu\mathrm{m}$,

. , photo 7 100μm, 600μm . フト

SEM-EDX .

X

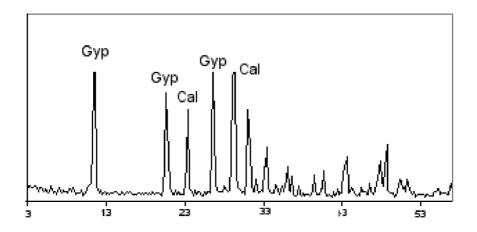


Figure 27. XRD Pattern -

XRD (Calcite) (Gypsum)

X (EDXRF)
Figure 28~33 X-

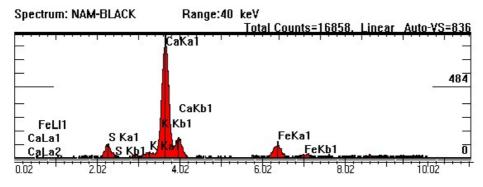


Figure 28. - Ca, Fe, S, K

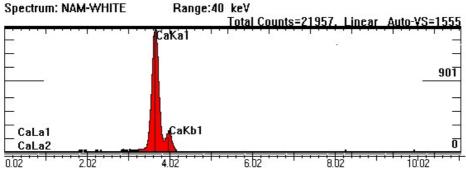
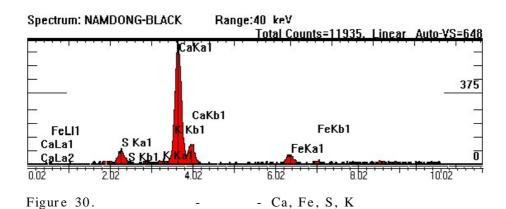



Figure 29. - () - Ca

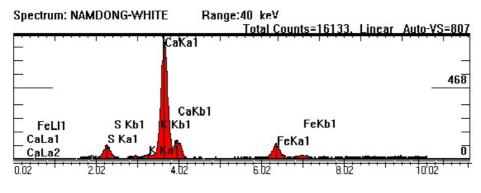


Figure 31. - Ca, Fe, S, K

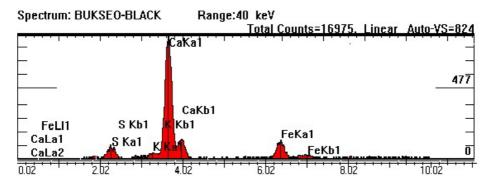


Figure 32. - Ca, Fe, S, K

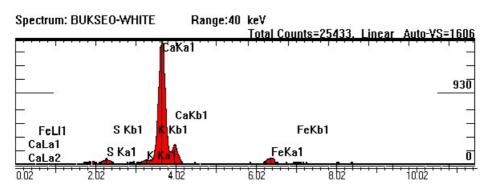


Figure 33. - Ca, Fe, S, K

K peak , Ca , Fe,

K, S

Ca, Fe, S , K

peak7 ,
Ca , Fe, K, S

Ca , rc, k, s , , Ca,

Fe, S, K peak7 , Ca

, K , Fe S .

Ca7t,

.

(ICP-AES)

ICP Table 5 Ca카 19~20wt% , 2

15wt% . Al Fe, K

0.3~0.8wt%

,

. 가

, SEM-EDX

Table 5.

	2	2	2	2	2
Ca	19.3	20.3	19.8	15.2	20.1
A1	1.80	1.02	1.27	0.84	1.07
Fe	0.79	0.48	0.59	0.36	0.49
K	0.57	0.27	0.36	0.31	0.30
Na	0.29	0.17	0.21	0.17	0.18
Mg	0.33	0.17	0.22	0.10	0.11
Mn	0.011	0.007	0.009	0.005	0.008
Zn	0.010	0.008	0.017	0.007	0.011
Cu	0.011	0.018	0.008	0.007	0.010
Ti	0.068	0.043	0.050	0.036	0.040
	23.18	22.486	22.534	17.035	22.319

: wt%

(SEM-EDX)

SEM-EDX

Photo 8, 9 (Gypsum)

EDX (Figure 34)

(Table 6) Ca, S, K가

 $Si \quad Al \qquad \qquad . \quad Ca \quad Calcite \quad CaSO_4 \ 2H_2O \qquad \qquad (Gypsum)$

, S CaSO₄ 2H₂O , K, Si, Al

(Albite) .

mapping

(Figure 35~38), Al, Si, S, C

20µm MAG = 1.46 K X

Photo 8. (1,000)

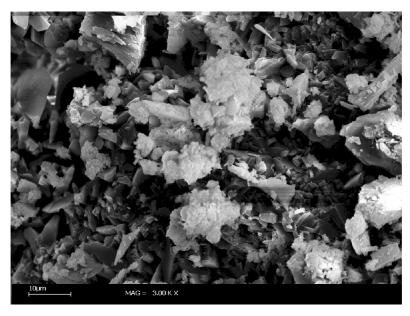


Photo 9. (3,000)

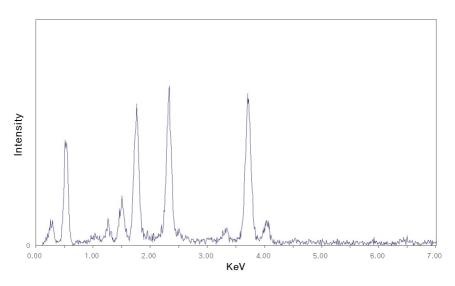


Figure 34. EDX

Table 6. EDX

Element	Element Wt.%				
Al	2.90				
Si	8.06				
S	29.18				
K	29.77				
Ca	30.08				
Total	100.00				

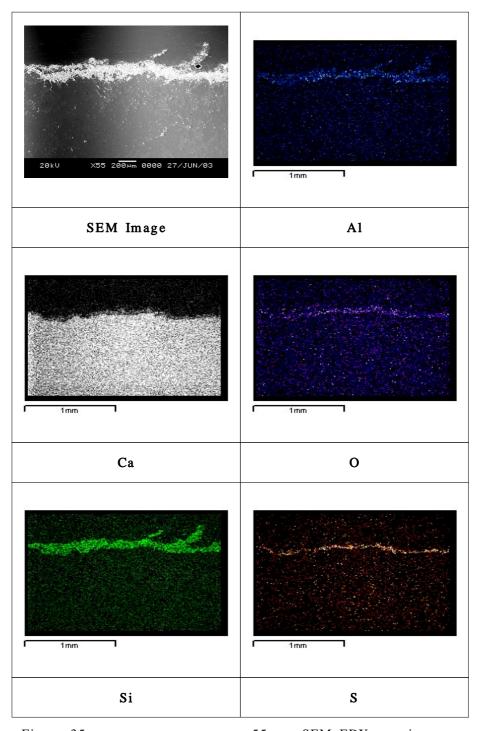


Figure 35.

- 55 - SEM-EDX mapping

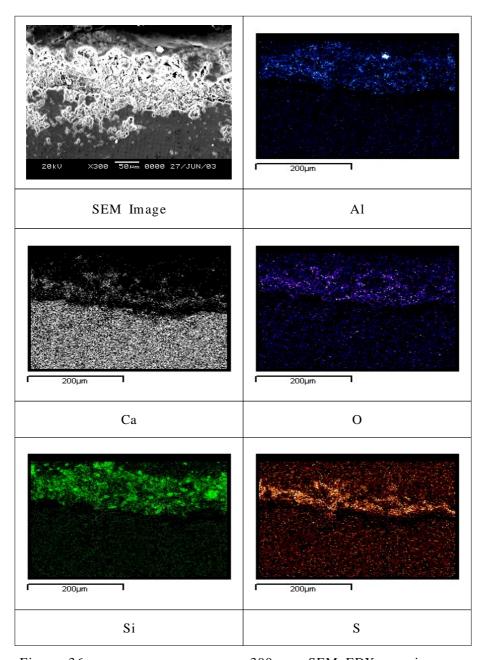


Figure 36. - 300 - SEM-EDX mapping

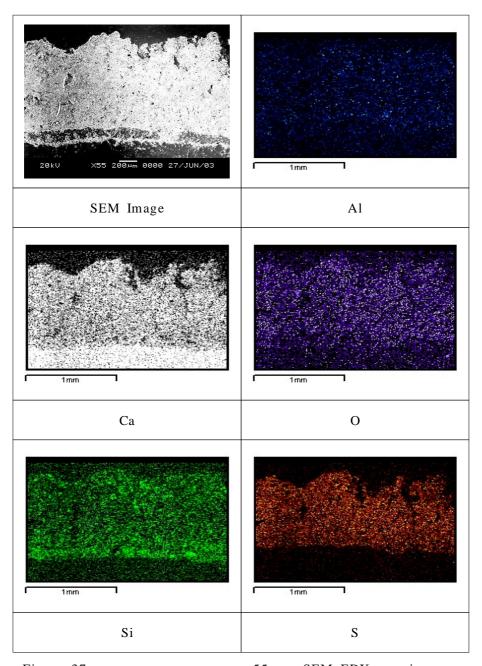


Figure 37. - 55 - SEM-EDX mapping

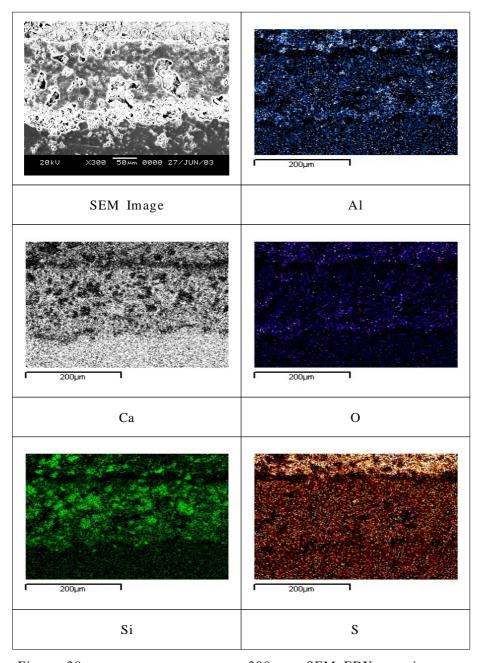


Figure 38. - 300 - SEM-EDX mapping

3.

1)

4가

(鐵片)

色

Table 7

Table 7.

(0 -)

1	2	3	4	5	6	7	8	9
0								
0	0	0	0	0				
0	0	0	0	0	0	•		
0	0	0	0	0	0	0	0	•

POWER 0.45) Q-SW6) ON 2

가 . 1

2

가

가

5 8

5 6 Q-SW(가)

가 Q-SW

가

. 9 . 가

Table 7

. Photo 10 가 40sec

Photo 10.

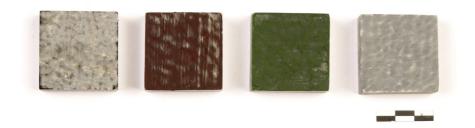


Photo 11.

. Photo 11 가

(Absorptivity)

100 %

가 .

가 가(假) , Figure 39 (Focus) (Focus in) (Focus out)) (가 Focusing (Figure 39) F=150F=300 F=150 $150\,\mathrm{mm}$ 10**mm** 10 가

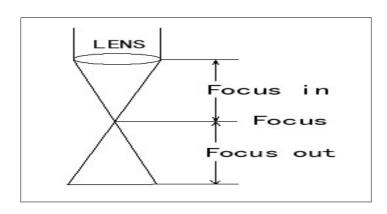


Figure 39.

Table 8. TEST

																			:	cm
	10	9	8	7	6	5	4	3	2	1	0	- 1	-2	-3	-4	- 5	- 6	-7	-8 -9	- 10
0.1 0.2 0.3	D D D	D D D	D D D	D D C	D C A	C C A	C C A	C C A	C C A	C C B	C C B	C C B	C C C	C C C	C C A	C C A		•	フ	
0.4	D D	D D	D D	C	A	A	A	A B	B B	B B	B B	B B	B	B B	A B	A	()
													()
						Α.		_	_			В.				C.		D	٠.	,
T a	ble	8						F	F=1					0	()			5 c	m
										フ										
				0.	3		0.5		기	- フ	}									
							•							0.1	, 0.	2				
		_	የ ት										0.4				•			
	±5 cr		′Γ										0.4							
2	:3 C I	11											•							
			가									7	7 }							
			•	,		,							•		가	假			,	
															•					
			0.4	4								5 CI	m			가				

Table 9.

1	3	5	8

Table 9 1

가 가 . 3

. 3 가

. Photo

112

가 가

가

Photo 12. 가(假) (가, ,)

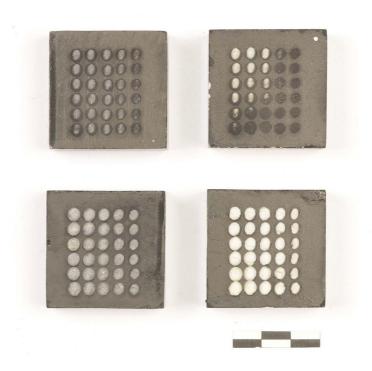


Photo 14.

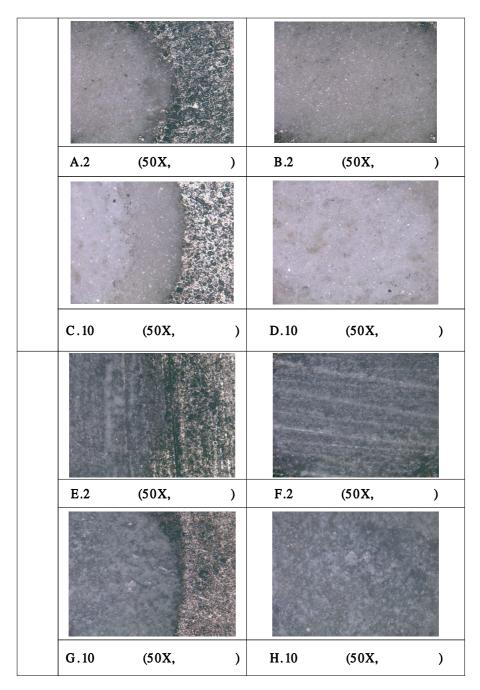


Figure 40.

Figure 40 (Photo 14) 50 'A, B' 가 'C' 가 'C' 가 'D' 가 Έ Α 가 'F' 가 가 가 'G' 'H' 10 'D' 가 가 Table 8 $1\,\mathrm{mm}$ $0.5\,\mathrm{mm}$ 0.5 $\text{mm} \sim 1 \text{mm}$ POWER 가 0.1 0.5 5 가 0.4 (P.R.R)

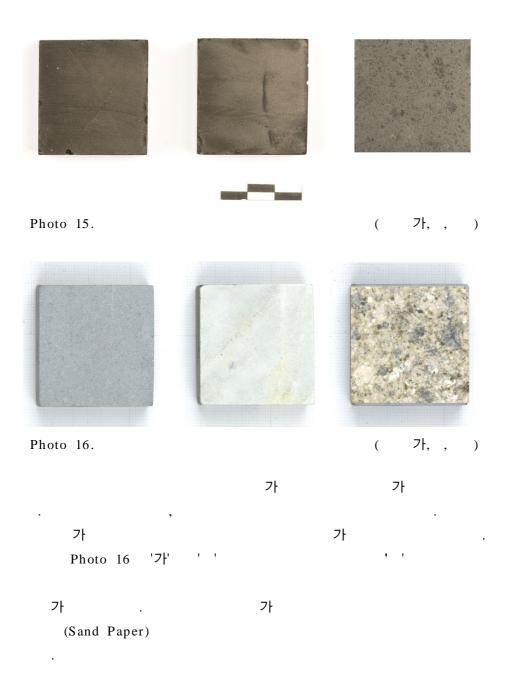
2Hz, 5Hz, 10Hz

SINGLE

가 5Hz 가가 .

Table 10. $20 \text{mm} \times 20 \text{mm}$

 Q- SW	POWER	P.R.R	M/SEC
0	0.4(4/5)	5Hz/5Level	1' 19"
0	0.4(4/5)	5Hz/5Level	1'6"
0	0.4(4/5)	5Hz/5Level	36"
×	0.4(4/5)	5Hz/5Level	-
×	0.4(4/5)	5Hz/5Level	-
×	0.4(4/5)	5Hz/5Level	-


Table 10 Q-SW ON/OFF
7 Q-SW7 OFF

. Q-SW ON . (20mm×20mm) 1mm 1 19 가

36 .

2)

가 '가' 가, $40\,\text{mm}{\times}40\,\text{mm}{\times}20\,\text{mm}$) 가 (Photo 15). () (Sand Braster) 2 가 (Glass beads) #90~150 (ø:0.16 $2 \sim 7 bars$ ~0.10mm, Eurogrit/)

7)

가 ,

. 가

가 . Photo 17, 19

가 .

.

Photo 17. Photo 18.

Photo 18, 20

가 .

' 가

7 282 (高達寺址雙獅子石燈) (京畿道) (驪州郡) (高達寺址) 1959

. 10 .

가 ,

.

Photo 19.

Photo 20. 가

•

1. 1990 1994

기 1994 가 1995 .

20 7; 5 9 6 24 .

, 6 ()

가 (8 , 148). , 1995 1995 7

,

Q-Switch
Nd-YAG Laser (日本赤外線株式會社, Japan).

フト

Focusing⁸⁾

スト

2.

1)

. 가 1~3mm

,

가 **積**債

, 가 .

가 .

8

가 가

가

Photo 21. Photo 22.

가 Photo 21

가 . 가

가 .

Focusing
Focusing out
가

가 1~2 가

가

가

Photo 24.

2)

가 가 , 가 , (Patina)⁹⁾ 가 .

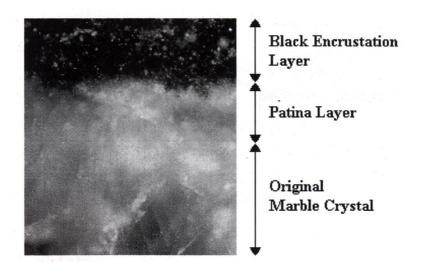


Photo 25.

Photo 25

0

Lee, J. M., and Watkins, $\it et~al.,~2001,~Journal~of~Laser~Application~13(1),~pp\,19-\,25$

Photo 26. Photo 27.

가 , 가 가

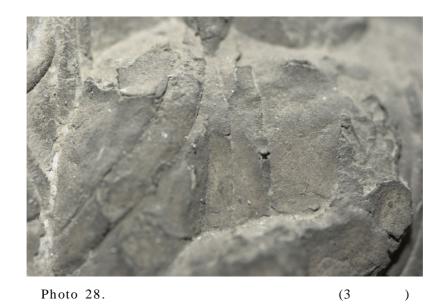


Photo 28

가 .

.

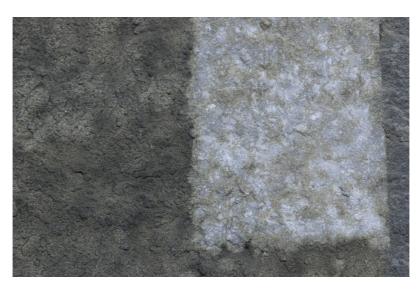


Photo 29.

Photo 29

가 .

. 가

가

가 .

가 , 가 가

가 .

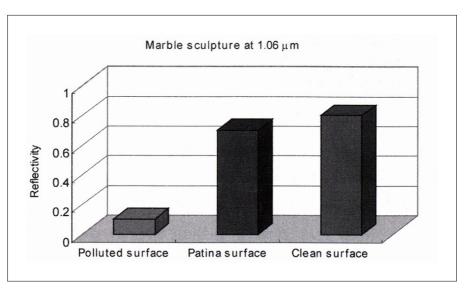


Figure 41.

. (包) (Photo 30). 가 가

Photo 30, 31, 31-1.

()

가

가

Photo 31 (刻字)

가

. Photo 32 1 3

가

가

가

가

,

가

Photo 32, 32-1.

> · 가 ,

가 가 .

가 , ·

가 가 .

가

.

가 가

가

가

•

가 .

가 .(Photo 35) 가

Nd:YAG 가 .

가 Nd:YAG

(excimer) 가

가 ,

- 75 -

Photo 33, 34.

Photo 35.

Photo 36.


```
<
          >
                a, ,1975.
     松都古蹟』,1946、 松都古蹟』, ,1977.
                                   J ,
      2003.
                                         』,1996.
          가 」,
                  , 1990.
                                J, <sup>6</sup>
                         a, 1999
                              a, 1988
                                         가
              ( )』, 1992.
                                            a 1,
     1980
                                 』,1993.
                          』,1967
                        a, 6 ( 6 ), 1997.
                            , 1996
                     J,
        16 , 1995.
                                a 10,
     2001.
    , г
                               (
                                           ) 🛮 6 ,
     2001.
                     , 1991.
             J,
                              , 1998.
                 a,
             , г
                                                 J,
               C
                          』,1998.
```

,	Г	-	J ,
	C	2 0, 1968.	
, г	() д , Г	a 20, 1968.
	, ┏		a, 1970.
,		가	.,1971.
Asmus, J, F.,	Light for	art conservation	」, Interdisciplinary
	Science R	eviews 4, 1987.	
, Laser r	estoration	of the medieval	sculpture of the
Cremona	a cathedra	al」, Proceedings	of ICALEO'99 a, Section
F, 1999			
			r cleaning , The Building
_		n Directory』, 19 a for Sulphur Oxi	des], Environmental
		Publa, No. AP-5	
	_		in air: mechamisms and
20, 1111 01 01		_	Journal of Applied Physics
	33 』,19		
Lee, J. M. et a	_		es and particles from
, , , , , , , , , , , , , , , , , , , ,			oelectronic j fabrication j,
		Express 7(2)	
, Remova	_	_	on wafer by laser-induced
		_	rnal of Applied Physics
89(11)』,			
, In-proc	ess and ir	ntelligent monitori	ing systems for laser
cleaning	process	, Ph.D. Thesis	a, The University of
Liverpoo	ol, 1999.		
Lee, J. M. et a	I.,. Laser	cleaning for elec	ctronic device fabrication ,
	The	Industrial Laser U	User 18 a, 2000.
Laser c	leaning: In	ntroduction and A	pplications],
C	가	3(1) , 2000 .	
In-proc	ess chrom	natic monitoring in	n the laser cleaning of

marble \rfloor , Fournal of Laser Application 13(1) $_{2}$, 2001.

Schyocker, D., Handbook of the EuroLaser Academy J., Chapman & Hall, 1998.

Steen, W. M., Laser Materials Processing, Springer-Verlag, 1991.

< >

,

,

,

,

가 가 ·

.

. 가 가

가 , .

,

,

<Abstract>

A study on elimination of contaminants used by the laser for the 10 storied-pagoda in the temple of Kyoungchunsa

Submitted by Kim Jinhyung

Department of Cultural Properties

Graduate School Gyeongju University

Supervised by Professor Han Gyongsoon

July 2003

It has been proved that pollutants stuck on surfaces of stone architecture have significant direct and indirect harmful effects on them, Among them some do not look evidently harmful, but they have potentials to ruin stone architecture as time goes on. Since the cultural assets have magnificent meanings as historical aspects, their future states should be considered seriously as well as the presence.

The past method to get rid of the pollutants from the surface of cultural properties has been changed a lot till the present along with scientific development of technology on this field. Existing method to eliminating pollutants are based on physical and chemical processing, which can make damages on them too. Recently cleansing using LASER has been developed in Europe and proved as effective and relatively less harmful to remove pollutants, and it has been adopted widely.

After the success of the way by LASER, there are several trials to adopt the way to our cultural properties which have similar materials. Those showed satisfactory results and studies for developing the securer and more dependable ways to apply.

From now on the report will show the effective ways to apply the method using LASER on to the similar materials and different materials as well and discuss about the pros and cons about the method.