教育學 碩師學位 請求論文

教員昇進規定 關 幼稚園教師 認識 研究

慶州大學校 教育大學院

教育行政專攻

李 慶 禮

指導教授 鄭 賢 珠

2003年 8月

教員昇進規定 關 幼稚園教師 認識 研究

慶州大學校 教育大學院 教育行政專攻 李慶禮

論文 教育學 碩士學位 論文 提出

指導教授 鄭 賢 珠

2003年 8月

李慶禮 教育學 碩士學位 論文 認准

審查委員

審查委員

審查委員

慶州大學校 教育大學院

2003年 8月

	1
1.	1
2.	
	5
1.	5
2.	
3.	11
4.	31
	34
1.	34
2.	35
	38
1.	38
2.	38
3.	64
	68
1	
2.	71
	74
ABSTRACT	
	80

- 1	11
- 2	15
-3 가	16
- 4	18
- 5	19
- 6	24
- 7	26
- 8	27
-9 .	가28
- 10	29
-11 가	30
- 1	36
- 1	38
- 2	39
-3	40
- 4	41
- 5	42
- 6	43
-7	44
-8	45
-9	46
- 10	47

48		- 11
49		- 12
50		- 13
51		- 14
52		- 15
53		- 16
54		- 17
55		- 18
56	••••	- 19
57		- 20
58		- 21
59	••••	- 22
60	· 가	- 23
6 1		- 24
62	가	- 25
가63		- 26

- 134	
-------	--

•

1.

가

.

.

가 . ,

가 .

·

, ,

<u>.</u>1)

522 5 4 (, , ,) 4 4 , 3 16 1 2 , (5

) , · 3

1) , (: , 2000), p.275.

2) , (2002), p10.

가

가

, , 가

가

가

, .

2.

,

,

· , .

·

, .

1.

가, 가

.3) 1

가

.4)

가, 가

가

가 가 .5)

(: , 1991), p.371. (: , 1993), p.127. (: , 3) 4) 5)

, 1996), p.320.

가 가 .

,

. .6)

, . , 가

·
,

6) , (1981), p.14.

,

가

.

7) 가

•

2.

· 가

가 ,

· ,

<u>,</u>8)

7) , (: , 1984), p.461.

7) , (: , 1984), p.461. 8) , p.275.

.9) 가 , 가 .10) 1) (seniority system) 가 .11) 가 가 가 .12)

9) (2000), pp.7-8. , 2003), p.821. , 1994), p.229. 10) 11)

25 20

.

(merit system)

, .13)

가

.14)

.

3)

· 가

(2001), p.10. 14) , (: , 1995), p.267.

가 가 .15) 가 가 가 가 .16) 4) 가 가 가 가 가 가 .17) 가

- 10 -

(:

, 1997), p.657.

, p.268.

, p.13.

15) 16) 17) .

3.

1) < -1>

.

< -1>

	1964.07.08	12	15 100 , 60 ,	
1	1969.12.04	12	15 (1,2,3,) 80 (, ,7\ 3) 80 , · · 10	
2	1972.12.30	6	20 (1,2,3) (, , ,7\ 4) 10 , 10 . 7\ 20	. 가
3	1973.08.08	7	: , , . 15 , 15 0.5	, 가
4	1974.05.09	6	· 가 (40)	가 · 가
5	1975.08.20	12		
6	1975.12.31	12	60 75 . (35)	
7	1976.12.31	12	· (25) 가	,

8	1979.02.07	12	15 25 1 (4) · (15) , , 7h 7h	
9	1981.08.12	12	가 (8)	
10	1986.04.26	12	; , 3 : = 10 : 25	,
11	1990.02.14	12	30 , 90 : = 50 : 50 : = 9 : 18	가
12	1991.02.01	12	,	
13	1992.02.17	12	가 97 가 97	
14	1993.03.06	12		
15	1994.09.22	12	, , 가 2	·
16	1996.02.07	12	\rightarrow	
17	1996.02.22	12	\rightarrow	
18	1997.07.09	12	(20 , 5) (:1 9 , :3 6 18)	가
19	2000.02.23	12	, 1 ,	
20	2000.02.28	12	\rightarrow	

21	2001.01.04	12	
22	2001.01.29	12	\rightarrow
23	2001.07.07	12	'フ෦' 가 가 가 가 가 가 가 3 , 가 가
24	2002.06.25	12	0.04 . () 0.0053 . 0.005 0.005 0.25
25	2002.12.16	12	· 7ŀ, , , 0.0177ŀ

2)

1997 7 9 (15424)

6 2002 6 25 (17635) 2002 12

16 (17292) 7†

.18)

13 14

,

· , () 가

18) , pp.821-836.

가 .19) 가 25 ('99.12.13) 3 18 , 9 0.01 0.04 가 0.50 가 0.0053 0.25 , . 0.005 가 (2003 1 31 가). "フト" 0.042 0.056 , " " 0.048 , " " 0.034 0.025 0.030 , " " 0.020 0.025 , 0.017 가 (2004 1 31). , 가 -2>, < -3>

- 14 -

19) , p.821.

< -2>

						1	
		가			84.00	0.3500	
(20)				74.00 64.00	0.3083	90
		가			6.00	0.1000	
(5)				5.00 4.00	0.0833 0.0666	
		(72)		20%		
			72 64		40% 30%		80
		(56)		10%		
	1.	:					
	18 < ()+(6	×	2)>	30
	(3)			+	,		

< -3> 가

	200	2. 2. 28	2002. 3.1		2003.3.1		
(가)							
o (가	0.021	1.25	0.021	1.25	0.021	1.25	
0	0.021	1.25	0.021	1.25	0.021	1.25	
0				0.04		0.04	
()		•	0.01	0.5	0.01	0.5	
		2.5		3.0		3.0	
o . 7	0.042		0.042		0.056		
(97.1231 7/0.042, 0.034,	0.034		0.034		0.048		
0.025, 0.017, 71 71 0.083,	0.025	4.0	0.025	4.0	0.030	4.0	
0.062, 0.041, 0.020, 5.0)	0.017		0.020		0.025		
0 ()	0.021	1.25	0.021	1.25	0.021	1.25	
	0.021		0.021		0.021		
0		1.25	0.0105	1.25	0.0105	1.25	
()	0.0105		0.0053		0.0053		
o 1	0.021	1.75	0.021	1.75	0.021	1.75	
o	0.015	2.5	0.015	2.5	0.015	2.5	
ㅇ 가 1	0.75		0.75		0.75		
2 3	0.5	0.75	0.5	0.75	0.5	0.75	
0 ()	-		0.25		0.25		
。 (가 가)	0.010	1.25	0.010	1.25	0.010	1.25	
	0.021	1.25	0.021	1.25	0.021		
. (-		0.005	0.60	0.005	2.000	
		-	0.005		0.005		
			-		0.017		
		14.0		14.6		14.75	

2002.12.16(17292) (プト)

1) 가 가 가 (1) ."20) (2) 가 가 (3) 12 31 가 가 2 (4)

- 17 -

20)

, p.787.

,

20 , 5

(5)

.

< -4>

	1. (가
가	2	
()	3.	
	1. 가 (,
	,	

(6)

90 .

< -5>

			1
	가	84.00	0.3500
(20)		74.00	0.3083
(20)		64.00	0.2666
	가	6.00	0.1000
		5.00	0.0833
(5)		4.00	0.0666

(7)

15 1 , 15

2)

(performance evaluation or appraisal)

가 가 .21)

가

.22)

가

(: , 2001), p.306. (: , 1995), 21)

22) , 1995), p.133. <u>(23)</u>

· 가 ,

.

· · 가

· 가 가 .

(2) 가

가 (), ()

·

(3) 12 31

.

.

2

23) , (: , 1993), p.251.

· 2

•

2

·

2

(

2002. 6. 25).

(4) 가

. , 4 () 가

4 () 3 () 가 .

(72) 20% (64 72) 40%

(56 64) 30% (56 10%) (5) 80 50% (6)) 7 , 5 가 가

(7)

10

. (8)

,

3)

가

,

가 .²⁴⁾

3 1 . 10 , 60 ,

30 , 180 .

24) , p.197.

(1)								
(2)							· 가	
(3)							7 ľ	٠
		12	31					
	<	-6>						
	<	-6>						
1. :			:			:		
2.								
44								
"								
3.								
		1	2	3	1	. 2	3	

"														
"														
3.														
		ı												
				1		2	3	1		2	3			
4.														
•														
5.														
6. ·														
													()

(4)

,

10 60

가 . . .

, 6

-6 **x** /

 $+6 \times (2)$ $=9 -(-) \times 0.05$

가

2 .

フト 90%, 85%, 3 80%

. '가'

< -7> .

< -7>

A	90%
В	85%
С	80%

(5)

•

, 가 .

가

, . .

•

. 2

7 , 3 5 , 4

3 .

,

,

. ,

, 3 ,

1 1 .

< -8> .

< -8>

1	1.00	0.50
1	0.75	0.375
3	0.50	0.25
		2
		1
		1
		0.5

(6)

, 가 .

4) 가가가가가

가

가

가

(1) .

4 <

- 9> 가 .

< -9> ・ 가

가	0.056
	0.048
	0.030
	0.025

(2) 가 7 0.021 1.25

•

(3) 0.021 , 0.0105

, 0.0050 7 1.25

(4) . .

0.021 ,

0.010 가 1.25 .

(5) 1 7 1997 12 31 1.25 , 1998 1 1 1 1.75

1.25 , 1998 1 1 1 1.75 7

.

(6)

0.021 1.25

•

(7)

0.021 가 1.25 .

(8) 가

가

0.75 가

.

(9)

0.015 가 2.5 .

(10) 가

가

< -10>

< - 10>

	a ()
•	。 (),
	° ()
	0
()	۰,
()	o •
(),	0 •
(·)	О
1	o ()
1	0
•	•
	o •

		,	15	1		,	15
		•		12	31		
			가		<	- 11>	
		<	- 11> 가				
1.							
	:		:		:		
2. 가							
3.	•					<u> </u>	
							()

(11) 가

4.

26) "

25) , ^r , , (1999).

26) , ^r , (2000).

"

· ,

,

,

. 가

27) " 가

"

10 2

, 가 98.1.1

·

.

28) " "

가 . ,

2

5 가 .

28) , ^r , (2001).

29) 가 가 1 가 가 1 () 가 2 , 가

2

98.1.1

29) J,

(2001).

•

1.

가 , , 가 가

< -1>

< -1>

가

2.

1) 130

2003 4 1 4 30 .

121 90.3% .

116

2)

·

가

4

25 .

< -1> .

	1.	1
	2.	2
	3.	3
	4.	4
	5. 가	5
	6.	6
	1.	7
	2.	8
	3.	9
	4.	10
	5.	11
	1.	12
	2.	13
	3.	14
	4.	15
	5.	16
	1.	17
	2.	18
	3.	19
	4.	20
	5.	21
	1. · 가	22
가	2. · 가	23
71	3. 가	24
	4. · · 가	25

3)

SPSSWIN 10.0

•

t-test ² (Chi-square)

. =.05, =.01, =.001

•

1.

< -1>

•

< - 1>

	()	(%)
15	47	40.5
15	69	59.5
30	75	64.7
40	41	35.3
()	50	43.1
	66	56.9
	116	100.0

 < -1>
 116
 15

 59.5%
 15
 40.5%
 ,
 30

 71
 64.7%
 40
 35.3%
 .
 .

 71
 56.9%
 ()
 43.1%
 .

2.

, ,

1)

(1)

< -2> 2.68 ,

< -2>

	n	Mean	SD	t	p
15	47	2.43	0.97	1.57	0.119
15	69	2.72	1.03	- 1.57	
30	75	2.44	0.89	2.40	0.018*
40	41	2.90	1.16	- 2.40	
()	50	2.50	0.97	0.06	0.240
	66	2.68	1.04	- 0.96	0.340
	116	2.68	1.04		

* p<.05, ** p<.01, *** p<.001

(t=-2.40, p<.05) 40 フト

30 .

, 가 .

, 40 7 30

(2)

<

-3> 3.18 ,

•

< -3>

	n	Mean	SD	t	p
15	47	2.94	0.99	2.00	0.047*
15	69	3.35	1.15	- 2.00	
30	75	2.96	1.03	2.02	0.003**
40	41	3.59	1.12	- 3.03	
()	50	3.08	1.03	0.86	0.392
•	66	3.26	1.15	0.86	
	116	3.18	1.10		

^{*} p<.05, ** p<.01, *** p<.001

가 .

, 15 40 가 가 . (3)

< -4> 2.11 , 가

< -4>

		n	Mean	SD	t	p
	15	47	2.34	0.96	2.24	0.027*
	15	69	1.96	0.86	2.24	
	30	75	2.19	0.94	1 10	0.240
	40	41	1.98	0.88	1.18	
	()	50	2.06	0.79	0.55	0.586
		66	2.15	1.01	- 0.55	
		116	2.11	0.92		

* p<.05, ** p<.01, *** p<.001

(t=2.24, p<.01) 15 フト

15

. 가 .

, 15 가 15

(4)

<

-5> 3.06 ,

< -5>

	n	Mean	SD	t	p
15	47	3.00	1.02	0.40	0.625
15	69	3.10	1.14	- 0.49	
30	75	2.89	1.01	2.27	0.025*
40	41	3.37	1.18	- 2.27	
()	50	2.98	0.91	0.72	0.475
•	66	3.12	1.21	- 0.72	
	116	3.06	1.09		

* p<.05, ** p<.01, *** p<.001

가 .

, 40 가 30 가 .

(5)

 < -6>
 가

 가 37.1%
 가

 16.4%,
 13.8%

. 32.8%, 가

< -6>

					가		(df)	p
	15	18 (38.3)	18 (38.3)	6 (12.8)	5 (10.6)	47 (40.5)	2.42	0.489
	15	25 (36.2)	20 (29.0)	10 (14.5)	14 (20.3)	69 (59.5)	(3)	
	30	30 (40.0)	27 (36.0)	10 (13.3)	8 (10.7)	75 (64.7)	5.43	0.143
-	40	13 (31.7)	11 (26.8)	6 (14.6)	11 (26.8)	41 (35.3)	(3)	
	()	19 (38.0)	10 (20.0)	9 (18.0)	12 (24.0)	50 (43.1)	8.63	
		24 (36.4)	28 (42.4)	7 (10.6)	7 (10.6)	66 (56.9)	(3)	0.035*
		43 (37.1)	38 (32.8)	16 (13.8)	19 (16.4)	116 (100.0)		

, 가 ,
$$(\ ^2=8.63, \ p<.05). \ (\) \ \ 7 +$$
 가 , .

가 .

가 가가 , · 가 ()

가 .

(6)

< -7> 2.37 ,

.

< -7>

	n	Mean	SD	t	p
15	47	2.53	0.88	1.84	0.068
15	69	2.26	0.70	1.04	
30	75	2.36	0.85	0.20	0.844
40	41	2.39	0.67	- 0.20	
()	50	2.36	0.72	- 0.13	0.000
•	66	2.38	0.84	- 0.13	0.899
	116	2.37	0.79		

* p<.05, ** p<.01, *** p<.001

, ,

,

,

2)

(1)

25 < -8>

가 49.1%

가 , 37.9%,

12.9%

, 30 40

. 가 .

< -8>

					2 (df)	p
15	17 (36.2)	3 (6.4)	27 (57.4)	47 (40.5)	3.80	0.150
15	27 (39.1)	12 (17.4)	30 (43.5)	69 (59.5)	(2)	0.130
30	25 (33.3)	7 (9.3)	43 (57.3)	75 (64.7)	6.21 (2)	0.045*
40	19 (46.3)	8 (19.5)	14 (34.1)	41 (35.3)		
()	19 (38.0)	7 (14.0)	24 (48.0)	50 (43.1)	0.10	0.951
	25 (37.9)	8 (12.1)	33 (50.0)	66 (56.9)	(2)	0.931
	44 (37.9)	15 (12.9)	57 (49.1)	116 (100.0)		

* p<.05, ** p<.01, *** p<.001

가가 , 15 가 15

·

(2)

< -9>

. 가

90

46.6% 가 , 31.9%,

21.6%

가 .

가 가

< -9>

					2 (df)	p
15	24 (51.1) 30 (43.5)	6 (12.8) 19 (27.5)	17 (36.2) 20 (29.0)	47 (40.5) 69 (59.5)	3.63 (2)	0.163
30 40	34 (45.3) 20 (48.8)	14 (18.7) 11 (26.8)	27 (36.0) 10 (24.4)	75 (64.7) 41 (35.3)	2.01 (2)	0.367
()	24 (48.0) 30 (45.5)	10 (20.0) 15 (22.7)	16 (32.0) 21 (31.8)	50 (43.1) 66 (56.9)	0.14 (2)	0.933
	54 (46.6)	25 (21.6)	37 (31.9)	116 (100.0)		

^{*} p<.05, ** p<.01, *** p<.001

(3)

- 10> < 가 54.3% 가 28.4%, 17.2% $(^{2}=9.41, p<.01)$ 15

가 10 , 15

10

 $(^{2}=9.38, p<.01). 30$ 가 40 , 40 30

.

< - 10>

					2 (df)	p
15	3 (6.4)	19 (40.4)	25 (53.2)	47 (40.5)	9.41	0.009**
15	17 (24.6)	14 (20.3)	38 (55.1)	69 (59.5)	(2)	0.009
30	7 (9.3)	24 (32.0)	44 (58.7)	75 (64.7)	9.38 (2)	0.009**
40	13 (31.7)	9 (22.0)	19 (46.3)	41 (35.3)		
()	6 (12.0)	14 (28.0)	30 (60.0)	50 (43.1)	1.93	0.381
•	14 (21.2)	19 (28.8)	33 (50.0)	66 (56.9)	(2)	
	20 (17.2)	33 (28.4)	63 (54.3)	116 (100.0)		

^{*} p<.05, ** p<.01, *** p<.001

가가 , 15 30 가

•

(4)

20 1 '7F' 0.3500 , 5 0.1000 < -11> 가 35.3% 가 ,

30.2%,

13.8%

< -11>

						² (df)	p
15	15 (31.9)	13 (27.7)	12 (25.5)	7 (14.9)	47 (40.5)	2.37	0.500
15	20 (29.0)	28 (40.6)	12 (17.4)	9 (13.0)	69 (59.5)	(3)	0.500
30	25 (33.3)	22 (29.3)	16 (21.3)	12 (16.0)	75 (64.7)	3.66	0.200
40	10 (24.4)	19 (46.3)	8 (19.5)	4 (9.8)	41 (35.3)	(3)	0.300
()	15 (30.0)	16 (32.0)	10 (20.0)	9 (18.0)	50 (43.1)	1.43	0.600
	20 (30.3)	25 (37.9)	14 (21.2)	7 (10.6)	66 (56.9)	(3)	0.699
	35 (30.2)	41 (35.3)	24 (20.7)	16 (13.8)	116 (100.0)		

^{*} p<.05, ** p<.01, *** p<.001

, ,

가 가 , , ,

.

(5)

, ,

<

- 12>

가 52.6% 가 , '가' 37.9%, 0.5%

< - 12>

		'7ŀ'			(df)	p
15	23 (48.9)	19 (40.4)	5 (10.6)	47 (40.5)	0.44	0.802
15	38 (55.1)	25 (36.2)	6 (8.7)	69 (59.5)	(2)	0.802
30	36 (48.0)	32 (42.7)	7 (9.3)	75 (64.7)	2.11	0.240
40	25 (61.0)	12 (29.3)	4 (9.8)	41 (35.3)	(2)	0.348
()	24 (48.0)	21 (42.0)	5 (10.0)	50 (43.1)	0.76	0.684
	37 (56.1)	23 (34.8)	6 (9.1)	66 (56.9)	(2)	0.004
	61 (52.6)	44 (37.9)	11 (9.5)	116 (100.0)		

* p<.05, ** p<.01, *** p<.001

, ,

가 가 , ,

.

3)

(1)

2

<

- 13> 1 7 h 60.3%

, 26.7%, 3

12.9%

< - 13>

		_	3		2	
		1			(df)	p
15	10	30	7	47		
13	(21.3)	(63.8)	(14.9)	(40.5)	1.27	0.529
15	21	40	8	69	(2)	0.529
13	(30.4)	(58.0)	(11.6)	(59.5)		
30	16	48	11	75		
30	(21.3)	(64.1)	(14.7)	(64.7)	3.27	0.195
40	15	22	4	41	(2)	0.193
40	(36.6)	(53.7)	(9.8)	(35.3)		
()	18	24	8	50		
	(36.0)	(48.0)	(16.0)	(43.1)	5.69	0.058
	13	46	7	66	(2)	0.038
	(19.7)	(69.7)	(10.6)	(56.9)		
	31	70	15	116		
	(26.7)	(60.3)	(12.9)	(100.0)		

* p<.05, ** p<.01, *** p<.001

, , 가 .

1

가가 , , . .

(2)

80 < - 14>

가 53.4%

가 , 40.5%,

6.0%

< - 14>

					2 (df)	p
15	24 (51.1)	2 (4.3)	21 (44.7)	47 (40.5)	3.72	0.156
15	23 (33.3)	5 (7.2)	41 (59.4)	69 (59.5)	(2)	0.130
30	32 (42.7)	4 (5.3)	39 (52.0)	75 (64.7)	0.50	0.780
40	15 (36.6)	3 (7.3)	23 (56.1)	41 (35.3)	(20	0.760
()	25 (50.0)	4 (8.0)	21 (42.0)	50 (43.1)	4.67	0.097
•	22 (33.3)	3 (4.5)	41 (62.1)	66 (56.9)	(2)	0.097
	47 (40.5)	7 (6.0)	62 (53.4)	116 (100.0)		

* p<.05, ** p<.01, *** p<.001.

, , 가 .

가가 , . . .

(3) 2 60%, 1 40%

< - 15>

1 가 38.8% 가 ,

1 1 50:50 33.6%,

23.3%

< - 15>

			50:50	1			2 (df)	p
15		14	17	15	1	47		
		(29.8)	(36.2)	(31.9)	(2.1)	(40.5)	3.43	0.330
15		13	22	30	4	69	(3)	0.550
13	13		(31.9)	(43.5)	(5.8)	(59.5)		
30		21	25	25	4	75		
30		(28.0)	(33.3)	(33.3)	(5.3)	(64.7)	4.19	0.242
40		6	14	20	1	41	(3)	0.242
40		(14.6)	(34.1)	(48.8)	(2.4)	(35.3)		
	,	14	13	22	1	50		
	, <u> </u>	(28.0)	(26.0)	(44.0)	(2.0)	(43.1)	4.06	0.255
		13	26	23	4	66	(3)	0.233
		(19.7)	(39.4)	(34.8)	(6.1)	(56.9)		
		27	39	45	5	116		
		(23.3)	(33.6)	(38.8)	(4.3)	(100.0)		

* p<.05, ** p<.01, *** p<.001

, , 가 .

1

가 가 , , ,

(4)

< -16> ,

가 52.6%

, 37.9%, 6.0%,

3.4%

< - 16>

			,				2	p
							(df)	Р
	15	20	21	5	1	47		
	15	(42.6)	(44.7)	(10.6)	(2.1)	(40.5)	4.56	0.207
	15	24	40	2	3	69	(3)	0.207
	13	(34.8)	(58.0)	(2.9)	(4.3)	(59.5)		
	30 40	28	38	5	4	75		
		(37.3)	(50.7)	(6.7)	(5.3)	(64.7)	2.50	0.476
		16	23	2		41	(3)	0.470
		(39.0)	(56.1)	(4.9)	-	(35.3)		
	()	17	30	2	1	50		
	()	(34.0)	(60.0)	(4.0)	(2.0)	(43.1)	2.41	0.491
		27	31	5	3	66	(3)	0.471
	-	(40.9)	(47.0)	(7.6)	(4.5)	(56.9)		
		44	61	7	4	116		
		(37.9)	(52.6)	(6.0)	(3.4)	(100.0)		

* p<.05, ** p<.01, *** p<.001

, , 가 .

가 가 , , . . .

(5)

< - 17>

가 65.5% ,

34.5% .

< - 17>

				2	
				(df)	p
15	21 (44.7)	26 (55.3)	47 (40.5)	3.64	0.056
15	19 (27.5)	50 (72.5)	69 (59.5)	(1)	0.056
30	26 (34.7)	49 (65.3)	75 (64.7)	0.00	0.055
40	14 (34.1)	27 (65.9)	41 (35.3)	(1)	0.955
()	17 (34.0)	33 (66.0)	50 (43.1)	0.01	0.024
	23 (34.8)	43 (65.2)	66 (56.9)	(1)	0.924
	40 (34.5)	76 (65.5)	116 (100.0)		

* p<.05, ** p<.01, *** p<.001

, , , 가 .

가

,

4)

(1) 27 3 < -18> 27 3

가 46.6%

가 , 28.4%,

25.0%

< - 18>

					2	p
					(df)	P
15	22	16	9	47		
13	(46.8)	(34.0)	(19.1)	(40.5)	4.99	0.083
15	32	13	24	69	(2)	0.063
13	(46.4)	(18.8)	(34.8)	(59.5)		
30	36	22	17	75		
30	(48.0)	(29.3)	(22.7)	(64.7)	4.18	0.124
40	18	7	16	41	(2)	0.124
40	(43.9)	(17.1)	(39.0)	(35.3)		
()	19	17	14	50		
	(38.0)	(34.0)	(28.0)	(43.1)	4.23	0.120
	35	12	19	66	(2)	0.120
•	(53.0)	(18.2)	(28.8)	(56.9)		
	54	29	33	116		
	(46.6)	(25.0)	(28.4)	(100.0)		

* p<.05, ** p<.01, *** p<.001

, , , 가 .

27 3

가 가 , , ,

(2)

10

. < -19>

가 36.2% 가

, 31.9%,

30.2%

.

< - 19>

							(df)	p
	15	14 (29.8)	18 (38.3)	15 (31.9)	-	47 (40.5)	1.65	0.649
	15	23 (33.3)	24 (34.8)	20 (29.0)	2 (2.9)	69 (59.5)	(3)	0.049
3	30	25 (33.3)	26 (34.7)	23 (30.7)	1 (1.3)	75 (64.7)	0.48	0.022
	40	12 (29.3)	16 (39.0)	12 (29.3)	1 (2.4)	41 (35.3)	(3)	0.923
	()	20 (40.0)	14 (28.0)	15 (30.0)	1 (2.0)	50 (43.1)	3.48	0.222
	•	17 (25.8)	28 (42.4)	20 (30.3)	1 (1.5)	66 (56.9)	(3)	0.323
		37 (31.9)	42 (36.2)	35 (30.2)	2 (1.7)	116 (100.0)		

* p<.05, ** p<.01, *** p<.001

, , , 가 .

가 가 , , , ,

(3)

3 , 2004 6 **x** /

+6 **x** (2) .

< -20>

가 69.8% 가

, 19.8%, 2

10.3%

< -20>

			2		2	
					(df)	p
15	8 (17.0)	34 (72.3)	5 (10.6)	47 (40.5)	0.39	
15	15	47	7	69	(2)	0.822
15	(21.7)	(68.1)	(10.1)	(59.5)		
30	14 (18.7)	54 (72.0)	(9.3)	75 (64.7)	0.50	0.780
40	9 (22.0)	27 (65.9)	5 (12.2)	41 (35.3)	(2)	0.760
()	11 (22.0)	37 (74.0)	2 (4.0)	50 (43.1)	3.85	
	12 (18.2)	44 (66.7)	10 (15.2)	66 (56.9)	(2)	0.146
	23 (19.8)	81 (69.8)	12 (10.3)	116 (100.0)		

* p<.05, ** p<.01, *** p<.001

, , , 가 .

가가 , ,

.

(4)

1 1

. < -21>

가

43.1% 7 , 34.5%, 1

2 22.4%

< -21>

		1 2			(df)	p
15	18 (38.3)	12 (25.5)	17 (36.2)	47 (40.5)	0.83	0.660
15	32 (46.4)	14 (20.3)	23 (33.3)	69 (59.5)	(2)	0.000
30	33 (44.0)	14 (18.7)	28 (37.3)	75 (64.7)	1.87	0.393
40	17 (41.5)	12 (29.3)	12 (29.3)	41 (35.3)	(2)	0.595
()	21 (42.0)	10 (20.0)	19 (38.0)	50 (43.1)	0.57	0.752
	29 (43.9)	16 (24.2)	21 (31.8)	66 (56.9)	(2)	0.753
	50 (43.1)	26 (22.4)	40 (34.5)	116 (100.0)		

* p<.05, ** p<.01, *** p<.001

, , 가 .

가 가 , . . .

(5)

3 < -22> フト 42.2%

가 , .

31.9%,

7.8%

< -22>

		·				² (df)	p
15	21 (44.7)	12 (25.5)	11 (23.4)	3 (6.4)	47 (40.5)	2.53	0.469
15	28 (40.6)	25 (36.2)	10 (14.5)	6 (8.7)	69 (59.5)	(3)	0.409
30	35 (46.7)	22 (29.3)	14 (18.7)	4 (5.3)	75 (64.7)	3.07	0.381
40	14 (34.1)	15 (36.6)	7 (17.1)	5 (12.2)	41 (35.3)	(3)	0.361
()	21 (42.0)	19 (38.0)	6 (12.0)	(8.0)	50 (43.1)	2.84	0.417
	28 (42.4)	18 (27.3)	15 (22.7)	5 (7.6)	66 (56.9)	(3)	
	49 (42.2)	37 (31.9)	21 (18.1)	9 (7.8)	116 (100.0)		

^{*} p<.05, ** p<.01, *** p<.001

, , 가 .

가 가 , ,

5) 가

6.0%

< -23> ・ 가

					가		2	
							(df)	p
	15	23	12	12		47		
		(48.9)	(25.5)	(25.5)	-	(40.5)	7.70	0.053
	15	22	16	24	7	69	(3)	0.055
	15	(31.9)	(23.2)	(34.8)	(10.1)	(59.5)		
	30	34	17	21	3	75		
		(45.3)	(22.7)	(28.0)	(4.0)	(64.7)	4.62	0.202
	40	11	11	15	4	41	(3)	0.202
		(26.8)	(26.8)	(36.6)	(9.8)	(35.3)		
	()	22	12	13	3	50		
		(44.0)	(24.0)	(26.0)	(6.0)	(43.1)	1.33	0.721
		23	16	23	4	66	(3)	0.721
	•	(34.8)	(24.2)	(34.8)	(6.1)	(56.9)		
		45	28	36	7	116		
		(38.8)	(24.1)	(31.0)	(6.0)	(100.0)		

^{*} p<.05, ** p<.01, *** p<.001

, , 가 가 . 가가 , ,

(2) · 가

· 가 2.5

. . 가

< - 24>

가 가 38.8%

가 , 34.5%,

21.6%, 가 5.2%

< -24> ・ 가

					가		2	
							(df)	p
15		20 (42.6)	17 (36.2)	9 (19.1)	1 (2.1)	47 (40.5)	1.98 (3)	0.576
15		25 (36.2)	23 (33.3)	16 (23.2)	5 (7.2)	69 (59.5)		
30		31 (41.3)	27 (36.0)	14 (18.7)	3 (4.0)	75 (64.7)	1.88 (3)	0.598
40		14 (34.1)	13 (31.7)	11 (26.8)	3 (7.3)	41 (35.3)		
()	23 (46.0)	14 (28.0)	10 (20.0)	3 (6.0)	50 (43.1)	2.46 (3)	0.482
		22 (33.3)	26 (39.4)	15 (22.7)	3 (4.5)	66 (56.9)		
		45 (38.8)	40 (34.5)	25 (21.6)	6 (5.2)	116 (100.0)		

^{*} p<.05, ** p<.01, *** p<.001

, , 가 .

가

가 가 , , , ,

.

가 56.0%

가 , 19.0%,

가 14.7%, 10.3%

.

< -25> 가

					가		² (df)	p
	15	23 (48.9)	5 (10.6)	11 (23.4)	8 (17.0)	47 (40.5)	1.84	0.606
	15	42 (60.9)	7 (10.1)	11 (15.9)	9 (13.0)	69 (59.5)	(30	0.606
	30	38 (50.7)	10 (13.3)	13 (17.3)	14 (18.7)	75 (64.7)	5.55	0.126
	40	27 (65.9)	2 (4.9)	9 (22.0)	3 (7.3)	41 (35.3)	(3)	0.136
	()	30 (60.0)	7 (14.0)	9 (18.0)	4 (8.0)	50 (43.1)	4.08	0.253
		35 (53.0)	5 (7.6)	13 (19.7)	13 (19.7)	66 (56.9)	(3)	0.233
		65 (56.0)	12 (10.3)	22 (19.0)	17 (14.7)	116 (100.0)		

^{*} p<.05, ** p<.01, *** p<.001

, ,

가

가 가 , , , ,

.

(4) · · 가

· ・ 가

1.25 . · · 가

< -26> ・ ・ フト

가 50.9% 가

, 27.6%, 11.2%,

가 10.3%,

< -26> ・ ・ 가

					가		2	
							(df)	p
	15	25	4	15	3	47		
		(53.2)	(8.5)	(31.9)	(6.4)	(40.5)	2.33	0.506
	15	34	9	17	9	69	(3)	0.500
		(49.3)	(13.0)	(24.6)	(13.0)	(59.5)		
	30	40	8	20	7	75		
		(53.3)	(10.7)	(26.7)	(9.3)	(64.7)	0.59	0.900
	40	19	5	12	5	41	(3)	0.900
		(46.3)	(12.2)	(29.3)	(12.2)	(35.3)		
	()	28	9	8	5	50		
		(56.0)	(18.0)	(16.0)	(10.0)	(43.1)	8.36	0.039*
		31	4	24	7	66	(3)	0.039
	•	(47.0)	(6.1)	(36.4)	(10.6)	(56.9)		
		59	13	32	12	116		
		(50.9)	(11.2)	(27.6)	(10.3)	(100.0)		

^{*} p<.05, ** p<.01, *** p<.001

가 , (²=8.36, p<.05). () フト・ 가 () . . 가 가 가 , () 가 . 가 3. 1) 가 (1)

,

,

,

. 가 ,

.

가 .

(2)

가가 , 15 가 15

. 가

, . 15 30 가

.

.

가 가 .

,

('') 가가 .

(3)

. 1 ,

. 2

가 . ,

.

가 ,

가

(4)

27 3

•

.

가

, 1 1

.

(42.2%)가 가 , (31.9%) · 가

가 .

(5) 가

· 가 · 가 , 가 , · · () 가

· 가 · 가

, 가 , . .

가 . •

1.

. , , ,

² (chi- square)

1)

,

가 40 15 가 가 15 15 40 가 30 가 가 가 15 30 , () 가 가 2) 가 가 가 15 , 15 • , 15 30 가

가 . ,

- 69 -

3)

,

,

. 가

4)

, 27 3

, ()

•

5) 가

 カ
 ・
 カ
 ・
 カ

 カ
 ・
 ・
 ・
 カ

.

2.

,

, 가 , . 가

,

. 1

· , 2004 ,

.

, 가

.

,

,

· ,

, 15 2 .

,

1 .

, .

가 .

• 가 가

,

, 가 .

가 .

, 가

,

,

, .

가 .

가 가 , , , , ,

가

, 2001. , : , 2003. , 1984. : , 1991. , 1993. , 2000. , 1989. : , 1995. , : , 1993. , : , 1996. , 1995. , : , 1996. , : J, , 2001. , 2000. J , , г 가 , 2000. J , ١,

, 1999.

, r , , 2001. - - , , , 2003. , , , 2002.

, г ј, 1981.

ABSTRACT

A Study on Teacher Perception of Promotion Regulations in Kindergarten

Lee Gyeong-rye

Educational Administration Major
Graduate School of Education
Kyongju University

(Supervised by Professor Jeong Hyeon-ju)

The purpose of this study was to examine the way kindergarten teachers looked at the current promotion regulations for educational government workers by career, age, and service area. It's basically meant to delve into what implications their perception had and present ideal promotion regulations for kindergarten teacher.

To build a theoretical background, the concept, significant and standards of promotion were discussed, and the current regulations for educational government officials and earlier studies were reviewed.

And questionnaire was prepared after relevant articles, literature, laws and all sorts of data were analyzed. A survey was conducted with the 25-item questionnaires that dealt with five areas: general characteristics, career rating, performance appraisal, training records and additional rating. The subjects in this study were 116 teachers from public primary school-attached kindergartens in Gyeongju and

Pohang. The collected data were analyzed by career, age and service area, and percentage were calculated. In addition, x^2 (Chi-square) test was employed to see whether there were any intergroup gaps.

The findings of this study were as follows:

First, they weren't well aware of the promotion regulations for educational government workers. There was little tendency to aspire for promotion or make efforts for that. And they weren't contented with that, and didn't think there were enough chances for that. The career rating was identified as the factor to give the largest impact on promotion.

Second, they hoped that career and ability would be given equal weight, that the career-rating period would be shortened and that extra career would be given more marks.

Third, performance appraisal results only for an year should be reflected, and its weight should be reduced. Regarding differentiated marks for service period of time, the weight of the recent year should be increased. Performance appraisal should be done by the head of kindergarten and assistant head only, and the outcome should be made public.

Fourth, the amended regulation about OJT rating frequency that is scheduled to be enforced in 2004 was rational, and more OJT period of time should be considered.

Fifth, the current regulation on additional rating should remain unchanged.

There are some suggestions based on the above-mentioned findings:

First, the current promotion regulations dealt with career rating, performance appraisal, training rating and additional rating. In order to select the right person who could successfully lead kindergarten organization in rapidly changing society, there should be major modifications in the current rating regulations.

Second, most of the teachers were more interested in manager position, as a road to becoming the assistant head of kindergarten, rather than in enriching their expertise. Given the circumstances, the current hiring system without examination should continue to be adopted, in which highly experienced teachers are preferred and their ample experience could be utilized for kindergarten management. And young, capable teachers should be given a chance to get promoted, and those with 15-year or more teacher career should be allowed to apply for promotion examination. Thus, a dual promotion system should be introduced, which takes advantage of both examination system and non-examination system.

Third, the teachers discredited performance appraisal because even the best contributor were placed in a disadvantageous position and those in line for promotion were rated higher instead. The period of time during which one's performance appraisal is reflected in promotion should be reduced to one year, so that the performance appraisal system could win confidence.

Fourth, the regulation that said training courses one has taken for

the recent decade only must be considered for promotion should be eliminated. It's necessary to take various actions to improve the training rating. For instance, teachers should be allowed to choose specific training results favorable for them at their own option.

Fifth, it doesn't comply with the principle of equity to give the same additional marks to every rural region without considering traffic system or living environment. As those who serve in remote areas are given additional marks, different additional points should be given to rural communities in consideration of surrounding environments.

Sixth, if the weight of research is overly upgraded, teachers are likely to be more concerned about working on research paper or plan rather than about child education. Even though the current regulation is rational, a little more marks should be provided to those who acquire a master's degree or doctorate to encourage self-training efforts, as such a degree exercises a huge influence on job performance of assistant head.

Seventh, getting promoted doesn't actually mean there are favorable changes in benefit programs or pay. As professionals, qualified teachers should be given adequate treatment and benefit programs.

Eighth, since frequent revision in the promotion system might cause a lot of confusion, the right authorities should make sustained efforts to gather opinions from teachers and find a viable solution.

	ഹ	
_	X()	_

2003 4

1.
_ 1) 15
_ 2) 15

2.
_ 1) 30
_ 2) 40

3.
_ 1) () _ 2) ,

(

1. ?

2. (, ,)

3. 가

?
- 1)
- 2)
- 4)
- 5)

4.

?

?

5. **가**

_ 1) _ 2) _ 3) _ 4) 가

6. ?

_ 1) _ _ 2) _ _ 3)
_ 4) _ 5)

•

7.		2	25		
? _ 1) _ 3)			_ 2))	
8.	?		90		
_ 1) _ 3)			_ 2))	
9. , 가 17.	75) ?	(90)		80 ,	30
_ 1)	_ 2)		_ 3)		
10. 0.10) - 1) - 2) - 3) - 4) - 5)			20 ,	0.35)	(5 ,
11. _ 1) _ 2) '가'		?		, ,	
_ 3)					

•

12. 2 ? _ 1) _ 2) 1 _ 3) 3 80 13. ? . _ 1) _ 2) _ 3) 14. 60%, 1 40% 1 . _ 1) ? _ 2) 50 : 50 _ 4) (_ 3) 1) 15. 가 ? . _ 1) _ 2) _ 4) _ 3)) 16. ? _ 1) _ 2)

27 ,

3) 30

- 84 -

(

17.

_ 1)				_ 2)		
18.			?	10		
_ 1) _ 3)				_ 2) _ 4)		
19.		() 2004	?		
				2004. 1.	31.	
	18	6 ×	/ x 3	6 x +6 x	(2	
			: 3		: 1 , 2	
_ 1) _ 3)	2			_ 2) _ 4) ()
20.			1 1	l		
_ 1) _ 3)				2) 1 2 4) ()
21. _ 1) _ 2)	3					?
_ 3)			-			

_ 4)

가 .

22. ・ **가** 4.0 가 . . ?

_ 1) _ _ 2) _ _ 3) _ _ 4) 7t

23. • 2.5 가

- 1) - 3) - 2) - 4) 7

24. , 0.01, 0.04 0.5

. ?

_ 1) _ 2) _ 3)

_ 4) 가

25. ・ ・ 1.25 가 . ?

. ? - 1) - 3) - 2) - 4) 가